Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pillarless mining technology is of great significance for improving coal recovery rates, but the intense mining-induced stress disturbances on gob-side entries often lead to surrounding rock instability. In this study, we focused on the ground control challenges in the headgate of Panel 81308 at Huayang Mine No. 2. Comprehensive monitoring of roof–floor convergence, rib deformation, and support resistance revealed the gob-side entry retaining deformation mechanisms with roof-cutting pressure relief; the results show that this retaining deformation exhibits the following three phases of characteristics: the rapid, decelerated, and stable stages. The average roof–floor convergence (607 mm) was significantly greater than the average rib deformation (170 mm), with floor heave accounting for 72.6% of total convergence. The coal pillar side showed dominant deformation in rib movements. The mining influence zones can be divided, based on their distances behind the working face, into strong disturbance zones (0–88 m), weak disturbance zones (88–142 m), and stabilized zones (>178 m). The cable bolt support system demonstrated advanced response characteristics. Compared with conventional gob-side entry retaining, the roof-cutting pressure relief technique altered stress transmission paths, significantly reduced roof load transfer efficiency, and effectively controlled roadway convergence, providing technical guidance for safe production in both this panel and mines with similar geological conditions.

Details

Title
Study on the Ground Pressure Manifestation Patterns of Roof Cutting and Pressure Relief
Author
Zheng Runhu; Bingyuan, Hao; Shi Chaoyao; Li Tongxi
First page
6049
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217722935
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.