Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

BQ323636.1 (BQ), a splice variant of NCOR2, is associated with endocrine therapy resistance and poorer prognosis in ER-positive breast cancer. This study investigates the role of BQ in modulating lipid metabolism to support tumor growth. RNA sequencing of BQ-overexpressing breast cancer cells revealed significant enrichment of fatty acid metabolism pathways (hsa01212 and hsa00061; p < 0.05), with ACSL4 identified as a key target. We show that BQ disrupts the NCOR2-PPARγ interaction, leading to ACSL4 upregulation, which enhances fatty acid oxidation (FAO), acetyl-CoA by 1.8-fold, and ATP production by 2.5-fold to fuel tumor proliferation. BQ also upregulates FASN and SCD, increasing lipids. A metabolites study with mass spectrometry indicated that BQ overexpression increases the fatty acid amount from 47.97 nmol/106 cells to 75.18 nmol/106 cells in MCF7 and from 56.19 nmol/106 cells to 95.37 nmol/106 cells in ZR-75. BQ activates NRF2, which mitigates ROS-induced stress, promoting cell survival. Targeting ACSL4 with the inhibitor PRGL493 reduced ATP production and suppressed tumor growth in vitro and in vivo, without inducing apoptosis, suggesting a cytostatic effect. PRGL493 treatment can reduce BQ overexpressing tumors by 40% in the xenograft model. These results highlight BQ can serve as a transcriptional hub driving lipid metabolism via ACSL4 in breast cancer. Our findings suggest that ACSL4 inhibition could be a novel therapeutic strategy to overcome treatment resistance in high-BQ expressing ER-positive breast cancer.

Details

Title
The Splice Variant of the NCOR2 Gene BQ323636.1 Modulates ACSL4 Expression to Enhance Fatty Acid Metabolism and Support of Tumor Growth in Breast Cancer
Author
Tsoi Ho  VIAFID ORCID Logo  ; Chan-Ping, You; Cheung, Koei Ho-Lam; Yin-Suen, Tse; Ui-Soon, Khoo  VIAFID ORCID Logo 
First page
4989
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217734465
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.