Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the progressive advancement of the energy transition strategy, wind–solar energy complementary power generation has emerged as a pivotal component in the global transition towards a sustainable, low-carbon energy future. To address the inherent challenges of intermittent renewable energy generation, this paper proposes a comprehensive energy optimization strategy that integrates coordinated wind–solar power dispatch with strategic battery storage capacity allocation. Through the development of a linear programming model for the wind–solar–storage hybrid system, incorporating critical operational constraints including load demand, an optimization solution was implemented using the Artificial Fish Swarm Algorithm (AFSA). This computational approach enabled the determination of an optimal scheme for the coordinated operation of wind, solar, and storage components within the integrated energy system. Based on the case study analysis, the AFSA optimization algorithm achieves a 1.07% reduction in total power generation costs compared to the traditional Simulated Annealing (SA) approach. Comparative analysis reveals that the integrated grid-connected operation mode exhibits superior economic performance over the standalone storage microgrid system. Additionally, we conducted a further analysis of the key factors contributing to the enhancement of economic benefits. The strategy proposed in this paper significantly enhances power supply stability, reduces overall costs and promotes the large-scale application of green energy.

Details

Title
Energy Optimization Strategy for Wind–Solar–Storage Systems with a Storage Battery Configuration
Author
Wang, Yufeng 1 ; Ji Haining 2   VIAFID ORCID Logo  ; Luo Runteng 1 ; Liu, Bin 2   VIAFID ORCID Logo  ; Wu Yongzi 1 

 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China 
 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China, Hunan Engineering Laboratory for Microelectronics, Optoelectronics and System on a Chip, Xiangtan University, Xiangtan 411105, China 
First page
1755
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217737851
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.