Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lightning is one of the most severe natural disasters, characterized by its sudden onset, short duration, and significant damage. Existing quality control (QC) schemes for millisecond-level lightning observation data from a single source are primarily limited by the instrument and equipment, leading to inadequate monitoring, forecasting, and early warning accuracy in severe convective weather. This study proposes a comprehensive QC scheme for lightning location data from the China Meteorological Administration ground-based National Lightning Detection Network (CMA-LDN). The scheme integrates radar composite reflectivity (CREF) and FY-4A cloud-top brightness temperature (TBB), exploring the coupled relationship between lightning activity and severe weather processes. Through experimental analysis of convective processes over different time periods, QC thresholds are established based on the CREF, TBB, and area ratio. In this research, CREF ≥ 10 dBZ, TBB ≤ 270 K, and an 80% area ratio are tuned to filter false signals. Based on the regional threshold and area ratio results, gross error elimination and spatiotemporal clustering are combined to achieve an overall QC rate of 28.7%. The most effective quality control (QC) method is spatial-temporal clustering, achieving a QC efficiency of 20.9%. The processed lightning data are further merged with CREF and generated a 1 km and 6 min resolution lightning location dataset, which significantly improves the accuracy of ground-based lightning detection and supports operational forecasting of severe convective weather.

Details

Title
Quality Control Technique for Ground-Based Lightning Detection Data Based on Multi-Source Data over China
Author
Xu Yongfang 1   VIAFID ORCID Logo  ; Shen, Yan 1 ; Jiang, Xiaowei 1 ; Tian Fengyun 1 ; Cao Lei 1 ; Wang, Nan 2 

 National Meteorological Information Centre, Beijing 100081, China; [email protected] (Y.X.); [email protected] (X.J.); [email protected] (F.T.); [email protected] (L.C.) 
 Cangzhou Meteorological Bureau, Cangzhou 061018, China; [email protected] 
First page
1928
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217747296
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.