Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Progressive global aging has increased the number of elderly individuals living alone. The consequent rise in fall accidents has worsened physical injuries, reduced the quality of life, and increased medical expenses. Existing wearable fall-detection devices may cause discomfort, and camera-based systems raise privacy concerns. Here, we propose a non-contact fall-detection system that integrates 4D imaging radar sensors with artificial intelligence (AI) technology to detect falls through real-time monitoring and visualization using a web-based dashboard and Unity engine-based avatar, along with immediate alerts. The system eliminates the need for uncomfortable wearable devices and mitigates the privacy issues associated with cameras. The radar sensors generate Point Cloud data (the spatial coordinates, velocity, Doppler power, and time), which allow analysis of the body position and movement. A CNN model classifies postures into standing, sitting, and lying, while changes in the speed and position distinguish falling actions from lying-down actions. The Point Cloud data were normalized and organized using zero padding and k-means clustering to improve the learning efficiency. The model achieved 98.66% accuracy in posture classification and 95% in fall detection. This study demonstrates the effectiveness of the proposed fall detection approach and suggests future directions in multi-sensor integration for indoor applications.

Details

Title
Non-Contact Fall Detection System Using 4D Imaging Radar for Elderly Safety Based on a CNN Model
Author
Ahn Sejong 1 ; Choi Museong 2   VIAFID ORCID Logo  ; Lee, Jongjin 2 ; Kim, Jinseok 1 ; Chung Sungtaek 1 

 Department of Computer Engineering, Tech University of Korea, Siheung 15073, Republic of Korea; [email protected] (S.A.); [email protected] (J.K.) 
 Department of Bio Health Convergence Engineering, Tech University of Korea, Siheung 15073, Republic of Korea; [email protected] (M.C.); [email protected] (J.L.) 
First page
3452
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3217747363
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.