Full text

Turn on search term navigation

© 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Harnessing the power of artificial intelligence(AI) approaches to innovatively generating the vector graphics of fine-grained patterns has become an important task in image edge extraction, particularly on the domain of intangible cultural heritage (ICH) images where they are typically fine-grained and having the complex edges. With higher autonomy, the machine learning algorithms are able to accurately extract the image information, understand and convey the concept contained in it. In this paper, we take Qiang embroidery patterns as an example due to containing fine-grained patterns, which is more suitable for the study of image processing and pattern recognition techniques. We firstly adopt appropriate pre-processing methods, improved adaptive median filtering(IAMF) and non-local mean for the two different types of Qiang embroidery patterns to reduce image noise. Then, the Xception algorithm based on convolutional neural networks(CNNs) is used for edge detection and extraction to generate vector graphics of the patterns. Experimental results show that Qiang embroidery patterns, after denoising and edge extraction, can be clearly identified the shape characteristics of the patterns. Based on this approach, the images can be converted into vector graphics for the digital preservation and further artistic reinterpretation. The use of the Xception algorithm effectively solves the problem of extraction of Qiang embroidery in two-dimensional vectorial images. In addition, our proposed method provides a reliable practical reference for the preservation of other related ICH images.

Details

Title
Generate vector graphics of fine-grained pattern based on the Xception edge detection
Author
Chen, Anqi  VIAFID ORCID Logo  ; Peng, Yicui; Li, Meng; Chen, Hao; Liu, Chang; Hu, Jinrong; Wen, Xiang; Huang, Guo  VIAFID ORCID Logo 
First page
e0318930
Section
Research Article
Publication year
2025
Publication date
Jun 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3218001997
Copyright
© 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.