It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Personalised Environmental Control Systems (PECS) are devices that cater to the individual needs by providing micro-climate heating, cooling, and ventilation. However, to ensure comfort, energy savings, and productivity, a comfort model based automatic control is required. For its development, thermal preference, physiological information, and data on the surrounding indoor climate were gathered from 24 subjects when using a newly developed PECS with heating, cooling, and ventilation functions. Since PECS should ensure a high level of comfort while providing energy savings through background temperature relaxation, multiple steady-state ambient temperature settings ranging from 18 to 28 °C were tested. The data were clustered according to the subject’s self-assessed general thermal preference, namely neutral, warmer, and colder. Machine learning was used to generate a cluster-based personalised comfort model using environmental, physiological, and behavioural indicators. The prediction performance of the models was 11 to 18 percent points higher than that of current group comfort models, predicted mean vote (PMV), which is independent of occupant similarities. The advantage of the personalised approach was the increased performance of the thermal comfort prediction at no expense of occupant sensitive information. Although reliant on estimates of physiological indicators, the models’ performance may be increased using real-time data acquisition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer