Full text

Turn on search term navigation

© 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes mellitus. It is characterized by progressive tubulointerstitial fibrosis. The aim of this study was to investigate the role of exosomal circular RNA (circRNAs) in regulating fibroblast growth factor 9 (FGF9) expression in DN through a competitive endogenous RNA (ceRNA) mechanism, and to reveal its potential therapeutic targets. Exosomes were isolated from serum of 3 healthy people and 3 patients with DN by ultra-fast centrifugation method, and the circRNA-miRNA-FGF9 regulatory network was constructed by combining high-throughput circRNA sequencing, bioinformatics analysis and weighted co-expression network (WGCNA). The results showed that the expression of circRNAs in serum exosomes of DN patients was significantly down-regulated, and hsa_circ_0006382 and hsa_circ_0019539 targeted the expression of FGF9 by binding to miR-34a-5p, miR-766-3p, miR-147a and miR-27a-3p. Further verification showed that the expression of FGF9 was decreased in renal tissues of DN patients (AUC = 0.902), and its recombinant protein could inhibit the expression of α-SMA and vimentin in high glucose-induced NRK-52E cells, indicating that activation of the circRNA/miRNA-FGF9 network promotes the EMT of renal tubular epithelial cells. This study revealed for the first time the mechanism of the circRNA-miRNA-FGF9 regulatory network in DN fibrosis, providing a theoretical basis for the development of diagnostic markers and targeted therapy strategies based on exosomal circRNA.

Details

Title
Circulating exosome-circRNAs mediated downregulation of FGF9 through ceRNA mechanism aggravates renal fibrosis in diabetic nephropathy
Author
Donglin Yang Rongjiang Yin Xiaomin Zhang Xiaohui Wang; Pei, Xiaobin; Guo, Zijie; Qiao, Pengyue; Zhu, Kehan; Wang, Lin; Du, Pengchao  VIAFID ORCID Logo 
First page
e0326217
Section
Research Article
Publication year
2025
Publication date
Jun 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3219796465
Copyright
© 2025 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.