It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
NOABSTRACT
The cellular and molecular pathways of α-lipoic acid’s (ALA’s) protective effect were assessed against diclofenac (DIC) hepatorenal injury in vivo and against a pro-inflammatory stimulus in vitro.
The injury was induced in 28 adult male Wistar rats weighing 130–160 g by a single intraperitoneal injection of DIC (50 mg per kg body weight (b.w.)) on the fifth day. Seven positive control rats had received no hepatorenally protective compounds. Oral 100 mg/kg b.w. doses of silymarin (SLY) were given to seven animals, 50 mg/kg b.w. doses of ALA to seven more and 100 mg/kg b.w. doses of it to another seven for five days before DIC insult. Seven negative control rats received only distilled water instead of protective compound and in the injection. The anti-inflammatory effect of ALA was also assayed in murine RAW264.7 macrophage cells.
In the cells, ALA was antioxidant and anti-inflammatory in a dose-dependent manner, reducing nitric oxide (NO) and reactive oxygen species generation with half maximal concentrations of 7.8 and 6.25 μg/mL, respectively. Both ALA doses and SLY protected the hepatorenal tissues and improved kidney and hepatic functions compared to the organs of the positive control group. Additionally, ALA reduced oxidative stress biomarker levels in hepatic and renal tissues compared to the positive control rats. It also improved liver and kidney histology, where hepatic lesions were fewer, and protected renal architecture. Immunohistochemical analysis showed ALA to reduce caspase-3 expression, supporting its hepatorenal anti-apoptotic effect. Alpha lipoic acid markedly upregulated the hepatorenal messenger RNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 and nicotinamide adenine (phosphate) reduced form : quinone oxidoreductase 1, suggesting that the Nrf2 signalling pathway was enhanced.
These findings suggested potential therapeutic benefits for ALA in mitigating DIC-induced hepatorenal toxicity through its anti-inflammatory, antioxidant and Nrf2-mediating effects. Future investigations are warranted to explore the synergistic interactions and multiomics mechanisms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details










1 Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
2 Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
3 Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
4 Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
5 Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
6 Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
7 National Institute of Complimentary Medicine Health Research Institute, Western Sydney University, Westmead NSW 2145, Australia