Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a dynamic weight model predictive control (DWMPC) strategy for adaptive cruise control (ACC) in pure electric vehicles, aiming to enhance robustness, energy efficiency, and ride comfort under complex traffic conditions. Unlike conventional MPC with static weights, the proposed method integrates a fuzzy inference system that evaluates driving urgency based on real-time spacing and velocity errors. The resulting emergency coefficient is mapped through a nonlinear function to dynamically adjust the velocity tracking weight in the MPC cost function. Additionally, a four-mode coordination mechanism adaptively modifies acceleration and jerk penalties according to risk levels, enabling balanced responses between safety and comfort. A composite performance evaluation index (PEI) is formulated to quantitatively assess energy consumption, ride comfort, spacing accuracy, and emergency responsiveness. Simulation results under WLTC and typical urban driving scenarios demonstrate that DWMPC outperforms fixed-weight MPC and PI controllers, reducing energy consumption by 6.5%, jerk by 42.9%, and response time by 41.8% while improving coordination in speed tracking, inter-vehicle distance regulation, and energy-efficient control.

Details

Title
Dynamic Weight Model Predictive Control for Longitudinal Adaptive Cruise Systems in Electric Vehicles
Author
Wentian, Wei 1 ; Li, Lan 1 ; Li, Qiyuan 1 ; Zhang, Song 2 ; Fan Chaoqun 2 ; Liang Lizhe 1   VIAFID ORCID Logo 

 School of Mechanical Engineering, Guangxi University, Nanning 530004, China; [email protected] (W.W.); 
 Yuchai Xinlan New Energy Power Technology Co., Ltd., Nanning 530004, China 
First page
6715
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223873600
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.