Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Three-dimensional CAD reconstruction is a long-standing and important task in fields such as industrial manufacturing, architecture, medicine, film and television, research, and education. Reconstructing CAD models remains a persistent challenge in machine learning. There have been many studies on deep learning in the field of 3D reconstruction. In recent years, with the release of CAD datasets, there have been more and more studies on 3D CAD reconstruction using deep learning. With the continuous deepening of research, deep learning has significantly improved the performance of tasks in the field of CAD reconstruction. However, this task remains challenging due to data scarcity and labeling difficulties, model complexity, and lack of generality and adaptability. This paper reviews both classic and recent research results on 3D CAD reconstruction tasks based on deep learning. To the best of our knowledge, this is the first investigation focusing on the CAD reconstruction task in the field of deep learning. Since there are relatively few studies related to 3D CAD reconstruction, we also investigate the reconstruction and generation of 2D CAD sketches. According to the different input data, we divide all investigations into the following categories: point cloud input to 3D CAD models, sketch input to 3D CAD models, other input to 3D CAD models, reconstruction and generation of 2D sketches, characterization of CAD data, CAD datasets, and related evaluation indicators. Commonly used datasets are outlined in our taxonomy. We provide a brief overview of the current research background, challenges, and recent results. Finally, future research directions are discussed.

Details

Title
A Survey on Deep Learning in 3D CAD Reconstruction
Author
Lin Ruiquan; Ji Yunwei; Ding Wanting; Wu, Tianxiang; Zhu Yaosheng; Jiang Mengxi  VIAFID ORCID Logo 
First page
6681
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223874104
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.