Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The deterioration of aging masonry structures poses significant challenges to structural safety, particularly under seismic loading. In response to the growing need for effective retrofitting solutions, stiff-type polyurea (STPU) has emerged as a promising material due to its high tensile strength, durability, and rapid application characteristics. This study investigates the seismic performance of masonry walls retrofitted with STPU through both shaking table tests and finite element analysis (FEA). Three types of specimens (non-strengthened, STPU-strengthened, and STPU + GFRP-strengthened walls) were subjected to out-of-plane seismic loading with additional mass loading to simulate real-world conditions. Experimental results demonstrated that STPU significantly improved the ductility and seismic resistance of masonry walls, with the STPU + GFRP hybrid system showing the highest performance. A simplified micro-model using ABAQUS successfully captured the primary failure modes and load-bearing behavior observed in the experiments. Furthermore, a parametric study on STPU thickness identified 2 mm as the most efficient thickness considering both strengthening effect and material economy. These findings confirm the effectiveness of STPU as a retrofitting material and demonstrate the reliability of the proposed numerical modeling approach in predicting the seismic response of retrofitted masonry structures.

Details

Title
Numerical Simulation and Experimental Validation of Masonry Walls Strengthened with Stiff-Type Polyurea Under Seismic Loads
Author
Lee, Tae-Hee; Jong-Wook, Kim; Lee, Sangwon; Kim Jang-Ho Jay  VIAFID ORCID Logo 
First page
6912
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223874965
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.