Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Engineered laminated bamboo frame structures have seen notable advancements in China, driven by their potential in sustainable construction. However, accurately predicting their seismic performance remains a pivotal challenge. Structural and non-structural damage caused by earthquakes can severely compromise building operability, lead to substantial economic losses, and disrupt safe evacuation processes, collectively exacerbating disaster impacts. To address this, three laminated bamboo frame models (3-, 4-, and 5-story) were developed, integrating energy-dissipating T-shaped steel plate beam–column connections. Two engineering demand parameters—peak inter-story drift ratio (PIDR) and peak floor acceleration (PFA)—were selected to quantify seismic responses under near-field and far-field ground motions. The study systematically evaluates suitable intensity measures for these parameters, emphasizing efficiency and sufficiency criteria. Regarding efficiency, the applicable intensity measures for PFA differ from those for PIDR. The measures for PFA tend to focus more on acceleration amplitude-related measures such as peak ground accelerations (PGA), sustained maximum acceleration (SMA), effective design acceleration (EDA), and A95 (the acceleration at 95% Arias intensity), while the measures for PIDR are primarily based on spectral acceleration-related measures such as Sa(T1) (spectral acceleration at fundamental period), etc. Concerning sufficiency, significant differences exist in the applicable measures for PFA and PIDR, and they are greatly influenced by ground motion characteristics.

Details

Title
Seismic Demand Prediction in Laminated Bamboo Frame Structures: A Comparative Study of Intensity Measures for Performance-Based Design
Author
Zhang Yantai 1   VIAFID ORCID Logo  ; Zhang Jingpu 2   VIAFID ORCID Logo  ; Gu Yujie 2 ; Zhang, Jinglong 2 ; Zheng Kaiqi 1   VIAFID ORCID Logo 

 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China, Jiangsu Carbon Sequestration Materials and Structural Technology of Bamboo & Wood Research Center, Nanjing 210037, China 
 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China 
First page
2039
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223882264
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.