Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wildfire is a critical driver of ecological processes in western U.S. forests, but recent shifts in climate, land use, and fire suppression have altered forest structure and disturbance regimes. Understanding post-fire recovery is essential for land management, particularly across complex montane landscapes like the southern Rocky Mountains. We assessed forest recovery in montane conifer forests, ranging from ponderosa pine to spruce-fir, following a large mixed-severity fire using field-based forest stand data and remotely sensed Leaf Area Index (LAI) measurements. Our objectives were to determine whether LAI is a meaningful proxy for post-fire vegetative recovery and how recovery patterns vary by forest type, burn severity, and abiotic factors. Stand characteristics predicted crown burn severity inconsistently and did not predict soil burn severity. LAI correlated strongly with live overstory tree density and shrub cover (R2 = 0.70). Recovery trajectories varied by forest type, with lower-severity burns generally recovering four years post-fire, while high-severity burns showed delayed recovery. Regeneration patterns were strongly influenced by climate, with higher seedling densities occurring at wetter sites. Our findings highlight the utility of LAI as a proxy for vegetative recovery and underscore the importance of forest type, fire severity, and climatic factors when assessing post-fire resilience.

Details

Title
Leafing Out: Leaf Area Index as an Indicator for Mountain Forest Recovery Following Mixed-Severity Wildfire in Southwest Colorado
Author
Remke, Michael 1   VIAFID ORCID Logo  ; Schneider, Katie 2 ; Korb, Julie 3 

 Department of Forestry, New Mexico Highlands University, Las Vegas, NM 87701, USA; [email protected] 
 Department of Hydrology and Water Sciences, Colorado School of Mines, Golden, CO 80401, USA; [email protected] 
 Biology Department, Fort Lewis College, Durango, CO 81301, USA 
First page
872
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223908990
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.