Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While the U1 small nuclear ribonucleoprotein (snRNP) plays a crucial role in early spliceosome assembly, the mechanisms by which it coordinates with other splicing factors for efficient assembly remain elusive. This study aimed to examine the role of the Swt21 protein in regulating U1 snRNP in Saccharomyces cerevisiae. Swt21p was required for efficient pre-mRNA splicing both in vivo and in vitro. Deletion of SWT21 altered the splicing patterns of two-intron SUS1 RNA, causing intron retention and exon skipping. Spliceosome assembly analysis revealed that in the pre-B complex, the levels of U1 protein components, as well as U1 RNA, were decreased following SWT21 deletion, highlighting the compromised stability of U1 snRNP during this stage. Consistently, in the absence of Swt21p, free isoform of U1 component Nam8p was observed, and its proper nuclear localization was disrupted, demonstrating the functional importance of Swp21p for the stable association of Nam8p with U1 snRNP. Moreover, Swt21p remained primarily in a free state under physiological conditions and did not associate with the pre-B complex. Additionally, TAP analysis revealed that Swt21p-associated proteins are involved in cellular processes beyond splicing. These findings collectively indicate that Swt21p functions as a spliceosome regulator rather than a core component and support a model wherein Swt21p contributes to U1 snRNP stability during early spliceosome assembly.

Details

Title
Swt21p Is Required for Nam8p-U1 snRNP Association and Efficient Pre-mRNA Splicing in Saccharomyces cerevisiae
Author
Lin, Ke; Fu Xiuhu; Wang, Lulu; Xiao, Sa; Wang Shenxin; Fan Yingjie; An Xinyu; Kum-Loong, Boon; Bao Penghui  VIAFID ORCID Logo 
First page
5440
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223912185
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.