Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ophiocordyceps sinensis is a medicinal fungus with significant nutritional and utilization value. Temperature is a crucial factor influencing its growth, as temperature changes can impact enzyme activity, metabolite content, and gene expression during fungal cultivation. Currently, there are limited reports on the effects of temperature on the quality of fungal fermentation. This study focuses on O. sinensis and conducts temperature stress culture experiments. The results indicate that the optimal culture temperature range is between 18 and 23 °C, with extreme temperatures negatively affecting the morphology, growth rate, sporulation, and antioxidant systems of the strains. Further metabolomic and transcriptomic analyses revealed that differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were primarily enriched in four metabolic pathways: linoleic acid metabolism, arginine and proline metabolism, and lysine degradation. Many significantly enriched metabolites across various pathways appear to be predominantly regulated by ribosomal and RNA polymerase genes. Furthermore, we cultured O. sinensis mycelium at various temperatures and observed that a significant number of genes and metabolites associated with apoptosis and senescence were expressed at 28 °C. This led to cell damage, excessive energy consumption, and ultimately inhibited mycelial growth. In summary, this study elucidates the response mechanisms of O. sinensis to key metabolic pathways under different temperature growth conditions and explores factors contributing to strain degradation.

Details

Title
Multiomics Provides a New Understanding of the Effect of Temperature Change on the Fermentation Quality of Ophiocordyceps sinensis
Author
Cao Zhengfei; Wang, Tao  VIAFID ORCID Logo  ; He, Hui  VIAFID ORCID Logo  ; Li, Yuling; Li Xiuzhang  VIAFID ORCID Logo 
First page
403
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2309608X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223914617
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.