Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

When ships conduct offshore operations in the ocean, they are subject to disturbances from natural factors such as sea breezes and waves. These disturbances lead to movements detrimental to the ship’s stability, especially heave movement in the vertical direction, which profoundly impacts the safety of shipboard facilities and staff. To counter this, the active wave compensation device is widely used on ships to maintain the stability of the working environment. However, the system’s efficiency and accuracy are compromised by the significant delay incurred while obtaining real-time motion signals and driving the actuator for motion compensation. To solve the time delay problem of shipborne wave compensation equipment in motion compensation under complex sea conditions, it is necessary to improve the ship heave motion prediction accuracy in an active wave compensation system. This paper presents a prediction method of ship heave motion based on the particle swarm optimization (PSO) and convolutional neural network–long short-term memory (CNN-LSTM) hybrid prediction model. The paper begins by establishing the ship heave motion model based on the P–M spectrum and slice theory, simulating the ship heave motion curve under different sea conditions on MATLAB. This simulation provides crucial data for the subsequent prediction model. The paper then delves into the realization method of ship heave motion based on PSO-CNN-LSTM, where the convolutional neural network (CNN) is used to extract the features of the input signal, thereby enhancing the multi-source feature fusion ability of the LSTM neural network model. The PSO algorithm is then employed to optimize the network structure and hyperparameters of the convolutional neural network. The experiments demonstrate that the proposed PSO-CNN-LSTM hybrid model effectively addresses the problem of predicting drift and boasts significantly higher prediction accuracy, making it suitable for predicting the short-term heave motion of ships. The data show that the optimized root mean square error (RMSE) value under level 5 sea conditions is 0.01265 compared to 0.01673 before optimization, and the optimized RMSE value under level 6 sea conditions is 0.01140 compared to 0.01479 before optimization, which demonstrates that the error between the predicted value and the actual value of the model decreases. This improved accuracy provides reassurance in the model’s predictive capabilities and lays the foundation for improving the accuracy of the motion compensation system in the future.

Details

Title
Short-Term Prediction of Ship Heave Motion Using a PSO-Optimized CNN-LSTM Model
Author
Li, Guowei 1   VIAFID ORCID Logo  ; Tang, Gang 1   VIAFID ORCID Logo  ; Zhang, Jingyu 1 ; Sun, Qun 2 ; Liu, Xiangjun 1 

 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China; [email protected] (G.L.); [email protected] (J.Z.); [email protected] (X.L.) 
 Mechnical College, Shanghai Dianji University, Shanghai 201306, China; [email protected] 
First page
1008
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223914985
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.