Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid detection and quantification of microbial quantity and aflatoxin are crucial for food safety and quality. In order to achieve rapid detection, nutmeg with mildew, but with difficult-to-observe mildew characteristics, was selected as the research object. Its intrinsic component (dehydrodiisoeugenol) and exogenous noxious substances (the total number of colonies and aflatoxin B1) were determined to clarify their changes during the mold process. Subsequently, electronic nose (E-nose) was employed to analyze the odor of nutmeg and was combined with six machine learning algorithms to establish a classification model for samples with different degrees of mold. Finally, three algorithms were chosen as the preferred options to establish the prediction models of indicator content, which can not only identify whether nutmeg is edible but also measure each index. The results demonstrate the enormous potential of E-nose for real-time detection for assessing food safety. In terms of qualitative analysis, the established classification model can achieve a more than 90% true positive rate, suggesting that E-nose could identify early mildew. In quantitative analysis, E-nose combined with Back Propagation Neural Network achieved the highest prediction accuracy, since the correlation coefficient between the predicted value and the measured value of aflatoxin B1 is 0.9776, the TAMC is 0.9443, and the TYMC is 0.9685. This study provides a reference for the rapid and comprehensive quality evaluation of mildew-prone nutmeg, and it confirms that E-nose can be applied as a quick and simple technology.

Details

Title
Rapid Classification and Quantitative Prediction of Aflatoxin B1 Content and Colony Counts in Nutmeg Based on Electronic Nose
Author
Yang, Ruiqi  VIAFID ORCID Logo  ; Zhu Keyao  VIAFID ORCID Logo  ; Zhao Yuanyu; Guo Xingyu; Wang, Yushi  VIAFID ORCID Logo  ; Wang, Jiayu; Zou Huiqin  VIAFID ORCID Logo  ; Yan, Yonghong
First page
2538
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223928423
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.