Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ocular drug delivery presents a persistent clinical challenge due to the protective anatomical structure of the eye, physiological barriers such as reflex blinking, and continuous tear fluid turnover. These factors significantly limit the bioavailability of topically applied medications, reducing the therapeutic effectiveness of conventional formulations, such as eye drops, ointments, and suspensions, particularly in the management of chronic ocular disorders, including dry eye syndrome, diabetic retinopathy, and age-related macular degeneration. Drug-eluting contact lenses (DECLs) offer a promising alternative, enabling sustained, localized, and controlled drug release directly at the ocular surface. While several reviews have addressed contact lenses as drug delivery platforms, this work provides a distinct perspective by focusing specifically on biodegradable polymer-based systems. Emphasis is placed on recent advances in the design and fabrication of DECLs using natural and synthetic biodegradable polymers, which offer superior biocompatibility, customizable degradation kinetics, and the capacity for programmable drug release. This review discusses the selection criteria for polymer matrices, strategies for drug incorporation, and key factors influencing release profiles. Moreover, this study highlights innovative methodologies and therapeutic approaches that differentiate it from the existing literature, providing a timely and comprehensive resource for researchers developing next-generation polymeric ocular drug delivery systems.

Details

Title
Biodegradable Contact Lenses for Targeted Ocular Drug Delivery: Recent Advances, Clinical Applications, and Translational Perspectives
Author
Rykowska Iwona 1   VIAFID ORCID Logo  ; Nowak Iwona 1   VIAFID ORCID Logo  ; Nowak Rafał 2   VIAFID ORCID Logo  ; Michałkiewicz Ola 1   VIAFID ORCID Logo 

 Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; [email protected] (I.N.); [email protected] (O.M.) 
 Department of Ophthalmology, Józef Struś City Hospital, Szwajcarska 3, 61-285 Poznań, Poland; [email protected] 
First page
2542
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223928464
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.