Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The impact of stratospheric aerosols on Earth’s climate, particularly through atmospheric heating and ozone depletion, remains a critical area of atmospheric research. While satellite data provide valuable insights, independent validation methods are necessary for ensuring accuracy. Twilight near-infrared (NIR) radiometry offers a promising approach for investigating aerosol properties, such as optical depth and layer height, at high altitudes. This study aims to evaluate the effectiveness of twilight radiometry in corroborating satellite data and assessing aerosol characteristics. Two methods based on twilight radiometry—the color ratio and the derivative method—are employed to derive the aerosol layer height and optical depth. Radiances at 450, 550, 762, 775, and 1050 nm wavelengths are analyzed at varying solar zenith angles, using zenith viewing geometry for consistency. Comparisons of aerosol optical depths (AODs) between Research Pandora (ResPan) and AErosol RObotic NETwork (AERONET) data (R = 0.99) and between ResPan and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data (R = 0.86) demonstrate a strong correlation. Twilight ResPan data are also used to estimate the aerosol layer height, with results in good agreement with SAGE and lidar measurements, particularly following the Hunga Tonga eruption in Lauder, New Zealand. The simulation database, created using the libRadtran DISORT and Monte Carlo packages for daylight and twilight calculations, is capable of detecting AODs as low as 10−3 using the derivative method. This work highlights the potential of twilight radiometry as a simple, cost-effective tool for atmospheric research and satellite data validation, offering valuable insights into aerosol dynamics at stratospheric altitudes.

Details

Title
Twilight Near-Infrared Radiometry for Stratospheric Aerosol Layer Height
Author
Mukherjee Lipi 1   VIAFID ORCID Logo  ; Wu, Dong L 2   VIAFID ORCID Logo  ; Abuhassan Nader 3 ; Hanisco, Thomas F 4   VIAFID ORCID Logo  ; Jeong Ukkyo 5 ; Jin, Yoshitaka 6   VIAFID ORCID Logo  ; Leblanc, Thierry 7 ; Mayer, Bernhard 8   VIAFID ORCID Logo  ; Mims, Forrest M, III 9 ; Morino Isamu 6   VIAFID ORCID Logo  ; Nagai Tomohiro 10 ; Nicholls, Stephen 11 ; Querel, Richard 12   VIAFID ORCID Logo  ; Sakai Tetsu 10   VIAFID ORCID Logo  ; Welton, Ellsworth J 13   VIAFID ORCID Logo  ; Windle, Stephen 14 ; Pantina, Peter 15 ; Uchino Osamu 10 

 Goddard Earth Sciences Technology and Research (GESTAR-II), University of Maryland, Baltimore County, Baltimore, MD 21228, USA; [email protected], Climate and Radiation Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected] (D.L.W.); [email protected] (P.P.) 
 Climate and Radiation Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected] (D.L.W.); [email protected] (P.P.) 
 Goddard Earth Sciences Technology and Research (GESTAR-II), University of Maryland, Baltimore County, Baltimore, MD 21228, USA; [email protected], Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected], Sciglob Instrument and Services, 9881 Broken Land Pkwy, Columbia, MD 21046, USA 
 Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected] 
 Major of Geomatics Engineering, Division of Earth and Environmental System Sciences, Daeyeon Campus, Pukyong National University, Busan 48513, Republic of Korea; [email protected] 
 National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan; [email protected] (Y.J.); [email protected] (I.M.) 
 Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA 92397, USA; [email protected] 
 Lehrstuhl fuer Experimentelle Meteorologie, Ludwig-Maximilians-Universitaet, Theresienstrasse 37, 80333 Munich, Germany; [email protected] 
 Geronimo Creek Atmospheric Monitoring Station, Seguin, TX 78155, USA; [email protected] 
10  Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba 305-0052, Ibaraki, Japan; [email protected] (T.N.); [email protected] (T.S.); [email protected] (O.U.) 
11  Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USA; [email protected], Mesoscale Atmospheric Process Lab, Boulder, CO 80301, USA 
12  National Institute of Water & Atmospheric Research Ltd. (NIWA), Lauder 9377, New Zealand; [email protected] 
13  Mesoscale Atmospheric Processes, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected] 
14  Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA; [email protected] 
15  Climate and Radiation Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; [email protected] (D.L.W.); [email protected] (P.P.), Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USA; [email protected] 
First page
2071
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223940234
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.