Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Quantum field theory (QFT) and general relativity (GR) are pillars of modern physics, each supported by extensive experimental evidence. QFT operates within Lorentzian spacetime, while GR ensures local Lorentzian geometry. Despite their successes, these frameworks diverge significantly in their estimations of vacuum energy density, leading to the cosmological constant problem—a discrepancy where QFT estimates exceed observed values by 123 orders of magnitude. This paper addresses this inconsistency by tracing the cooling evolution of the universe’s gauge symmetries—from SU(3)×SU(2)×U(1) at high temperatures to SU(3) alone near absolute zero—motivated by the experimental Meissner effect. This symmetry reduction posits that SU(3) forms the fundamental “atoms” of vacuum energy. Our analysis demonstrates that the calculated number of SU(3) vacuum atoms reconciles QFT’s predictions with empirical observations, effectively resolving the cosmological constant problem. The third law of thermodynamics, by preventing the attainment of absolute zero, ensures the stability of SU(3) vacuum atoms, providing a thermodynamic foundation for quark confinement. This stability guarantees a strictly positive mass gap defined by the vacuum energy density and implies a Lorentzian quantum structure of spacetime. Moreover, it offers insights into the origins of both gravity/gauge duality and gravity/superconductor duality.

Details

Title
Unbreakable SU(3) Atoms of Vacuum Energy: A Solution to the Cosmological Constant Problem
Author
Ali Ahmed Farag 1   VIAFID ORCID Logo 

 Essex County College, 303 University Ave, Newark, NJ 07102, USA; [email protected], Department of Physics, Benha University, Benha 13518, Egypt 
First page
888
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223942603
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.