Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The increasing adoption of photovoltaic systems presents new challenges for energy planning and grid stability. This study proposes a fuzzy logic-based methodology to identify potential PV adopters by integrating variables such as energy consumption, electricity tariff, solar radiation, and socioeconomic level. The approach was applied to a real distribution grid and compared against a previously presented method that selects users based solely on high energy consumption. The fuzzy logic model demonstrated superior performance by identifying 77.03 [%] of real adopters, outperforming the previous selection strategy. Additionally, the study evaluates the technical impact of PV integration on the distribution grid through power flow simulations, analysing energy losses, voltage stability, and asset loadability. Findings highlight that while PV systems reduce energy losses, they can also introduce voltage regulation challenges under high penetration. The proposed methodology serves as a decision-support tool for utilities and regulators, enhancing the accuracy of adoption projections and informing infrastructure planning. Its flexibility and rule-based nature make it adaptable to different regulatory and technical environments, allowing it to be replicated globally for sustainable energy transition initiatives.

Details

Title
Projection of Photovoltaic System Adoption and Its Impact on a Distributed Power Grid Using Fuzzy Logic
Author
López-Eugenio, Kevin 1   VIAFID ORCID Logo  ; Torres-Bermeo, Pedro 1   VIAFID ORCID Logo  ; Del-Valle-Soto, Carolina 2   VIAFID ORCID Logo  ; Varela-Aldás José 1   VIAFID ORCID Logo 

 Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Facultad de Ingenierías, Maestría en Big Data y Ciencia de Datos, Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador; [email protected] (K.L.-E.); [email protected] (P.T.-B.) 
 Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico; [email protected] 
First page
5235
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223942955
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.