Full text

Turn on search term navigation

© 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper introduces an optimized nested UNet model for automated left ventricular segmentation in cardiac function assessment. We utilize the EchoNet-Dynamic dataset, which contains both video data and expert annotations. Unlike conventional methods such as DeepLabv3 that struggle with large model sizes and imprecise segmentation, Our proposed model introduces a deeper feature extraction module to effectively capture multi-scale features and reduce computational overhead. By integrating the CBAM (Attention module) attention mechanism and a lightweight SimAM (Simple Attention Module) module, we enhance feature selectivity and minimize redundancy. To further stabilize training and address gradient issues, we combine binary cross-entropy and Dice loss functions. Experimental results reveal that our model significantly outperforms existing methods, achieving a 1.05% increase in the Dice coefficient and reducing model size to 15% of the original. These improvements not only enhance the accuracy of cardiac function assessments but also provide a more efficient solution for automated diagnosis in clinical practice.

Details

Title
Left ventricular segmentation method based on optimized UNet and improved CBAM: ESV and EDV tracking study
Author
Cao, Kerang; Zhao, Miao; Geng, Minghui; Zheng, Shuai; Jung, Hoekyung  VIAFID ORCID Logo 
First page
e0325794
Section
Research Article
Publication year
2025
Publication date
Jun 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3224181335
Copyright
© 2025 Cao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.