Full text

Turn on search term navigation

© 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advent of the big data era, the threat of network security is becoming increasingly severe. In order to cope with complex network attacks and ensure network security, a network intrusion detection model is constructed relying on deep learning technology. In order to extract and analyze network intrusion features, this study uses variational auto-encoders to extract and reduce the dimensionality of the invaded network traffic, and combines the advantages of extreme gradient boosting to perform classification tasks. Finally, a network intrusion detection model for network security is constructed by combining the gated recurrent unit. The results showed the area under the curve of the research model reached 97.48% and 95.24% in the KDD99 dataset and OODS dataset, respectively. In the confusion matrix experiment, the model achieved classification accuracy greater than 0.91 for different attack traffic samples in both the training and testing sets. When the sample sizes were 10000 and 40000, the shortest time and longest feature extraction time of the model were 0.030s and 0.112s, respectively. In summary, the constructed model on the basis of improved variational auto-encoder for network security has high accuracy in network intrusion detection.

Details

Title
Construction of VAE-GRU-XGBoost intrusion detection model for network security
Author
Chen, Yu; Zheng, Xiaohong  VIAFID ORCID Logo  ; Wang, Nan
First page
e0326205
Section
Research Article
Publication year
2025
Publication date
Jun 2025
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3224181350
Copyright
© 2025 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.