It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Root rot disease poses a devastating threat to Coptis chinensis Franch, a medicinal plant prized for its bioactive alkaloids. To dissect its defense mechanisms, we conducted integrated transcriptomic and metabolomic analyses on resistant (R), early-stage infected (S-ES), and late-stage infected (S-LS) plants Our findings reveal a disease severity-dependent escalation in flavonoid metabolism. Key metabolites, such as kaempferol and quercetin derivatives, were significantly increased compared to R, paralleled by progressive upregulation of biosynthetic genes (PAL, CHS, CHI, FLS). Strikingly, salicylic acid (SA)-associated metabolites and pathway genes (NPR1, NPR3/NPR4) showed no differential expression across groups, contrasting with typical SA-mediated defenses in other species. This study uncovers flavonoid biosynthesis as the primary defense strategy in C. chinensis during root rot progression, while SA signaling may not be the main defense mechanism. These results provide actionable targets for enhancing disease resistance in medicinal plants through metabolic engineering.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer