Full text

Turn on search term navigation

© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Evaluating the coherence of narrative sequences extracted from large document collections is crucial for applications in information retrieval and knowledge discovery. While mathematical coherence metrics based on embedding similarities provide objective measures, they require substantial computational resources and domain expertise to interpret. We propose using large language models (LLMs) as judges to evaluate narrative coherence, demonstrating that their assessments correlate with mathematical coherence metrics. Through experiments on two data sets—news articles about Cuban protests and scientific papers from visualization conferences—we show that the LLM judges achieve Pearson correlations up to 0.65 with mathematical coherence while maintaining high inter-rater reliability (ICC > 0.92). The simplest evaluation approach achieves a comparable performance to the more complex approaches, even outperforming them for focused data sets while achieving over 90% of their performance for the more diverse data sets while using less computational resources. Our findings indicate that LLM-as-a-judge approaches are effective as a proxy for mathematical coherence in the context of narrative extraction evaluation.

Details

Title
LLM-as-a-Judge Approaches as Proxies for Mathematical Coherence in Narrative Extraction
Author
Keith, Brian  VIAFID ORCID Logo 
First page
2735
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229143811
Copyright
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.