Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For data-intensive applications like edge AI and image processing, we present a new reconfigurable 8T SRAM-based in-memory computing (IMC) macro designed for high-performance and energy-efficient operation. This architecture mitigates von Neumann limitations through numerous major breakthroughs. We built a new architecture with an adjustable capacitance array to substantially increase the multiply-and-accumulate (MAC) engine’s accuracy. It achieves 10–20 TOPS/W and >95% accuracy for 4–10-bit operations and is robust across PVT changes. By supporting binary and ternary neural networks (BNN/TNN) with XNOR-and-accumulate logic, a dual-mode inference engine further expands capabilities. With sub-5 ns mode switching, it can achieve up to 30 TOPS/W efficiency and >97% accuracy. In-memory Hamming error correction is implemented directly using integrated XOR circuitry. This technique eliminates off-chip ECC with >99% error correction and >98% MAC accuracy. Machine learning-aided co-optimization ensures sense amplifier dependability. To ensure CMOS compatibility, the macro may perform Boolean logic operations using normal 8T SRAM cells. Comparative circuit-level simulations show a 31.54% energy efficiency boost and a 74.81% delay reduction over other SRAM-based IMC solutions. These improvements make our macro ideal for real-time AI acceleration, cryptography, and next-generation edge computing, enabling advanced compute-in-memory systems.

Details

Title
Effective 8T Reconfigurable SRAM for Data Integrity and Versatile In-Memory Computing-Based AI Acceleration
Author
Kumar, Sreeja S  VIAFID ORCID Logo  ; Nayak Jagadish  VIAFID ORCID Logo 
First page
2719
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229143833
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.