Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper we propose a novel set of techniques for real-time Multi-Target Multi-Camera (MTMC) tracking of vehicles in congested, low speed environments, such as those of drive-thru scenarios, where metrics such as the number of vehicles, time of stay, and interactions between vehicles and staff are needed and must be highly accurate. Traditional methods of tracking based on Intersection over Union (IoU) and basic appearance features produce fragmented trajectories of misidentifications under these conditions. Furthermore, detectors, such as YOLO (You Only Look Once) architectures, exhibit different types of errors due to vehicle proximity, lane changes, and occlusions. Our methodology introduces a new tracker algorithm, Multi-Object Tracker based on Corner Displacement (MTCD), that improves the robustness against bounding box deformations by analysing corner displacement patterns and several other factors involved. The proposed solution was validated on real-world drive-thru footage, outperforming standard IoU-based trackers like Nvidia Discriminative Correlation Filter (NvDCF) tracker. By maintaining accurate cross-camera trajectories, our framework enables the extraction of critical operational metrics, including vehicle dwell times and person–vehicle interaction patterns, which are essential for optimizing service efficiency. This study tackles persistent tracking challenges in constrained environments, showcasing practical applications for real-world surveillance and logistics systems where precision is critical. The findings underscore the benefits of incorporating geometric resilience and delayed decision-making into MTMC architectures. Furthermore, our approach offers the advantage of seamless integration with existing camera infrastructure, eliminating the need for new deployments.

Details

Title
Real-Time Multi-Camera Tracking for Vehicles in Congested, Low-Velocity Environments: A Case Study on Drive-Thru Scenarios
Author
Gellida-Coutiño Carlos 1   VIAFID ORCID Logo  ; Rios-Cabrera, Reyes 1   VIAFID ORCID Logo  ; Maldonado-Ramirez, Alan 2   VIAFID ORCID Logo  ; Sanchez-Orta, Anand 1   VIAFID ORCID Logo 

 Robotics and Advanced Manufacturing Division, Research Center for Advanced Studies (CINVESTAV), Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, Ramos Arizpe 25903, Mexico; [email protected] 
 Introid Inc., 199-Santa Susana Avenue, Saltillo 25297, Mexico; [email protected] 
First page
2671
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229144013
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.