Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wake effects significantly reduce efficiency and increase structural loads in wind farms. Therefore, accurate and computationally efficient models are crucial for wind farm layout optimization and operational control. High-fidelity computational fluid dynamics (CFD) simulations, while accurate, are too slow for these tasks, whereas faster analytical models often lack dynamic fidelity and 3D detail, particularly under complex conditions. Existing data-driven surrogate models based on neural networks often struggle with the high dimensionality of the flow field and scalability to large wind farms. This paper proposes a novel data-driven surrogate modeling framework to bridge this gap, leveraging Neural Networks (NNs) trained on data from the high-fidelity SOWFA (simulator for wind farm applications) tool. A physics-inspired NN architecture featuring an autoencoder for spatial feature extraction and latent space dynamics for temporal evolution is introduced, motivated by the time–space decoupling structure observed in the Navier–Stokes equations. To address scalability for large wind farms, a “wind box” decomposition strategy is employed. This involves training separate NN models on smaller, canonical domains (with and without turbines) that can be stitched together to represent larger farm layouts, significantly reducing training data requirements compared to monolithic farm simulations. The development of a batch simulation interface for SOWFA to generate the required training data efficiently is detailed. Results demonstrate that the proposed surrogate model accurately predicts the 3D dynamic wake evolution for single-turbine and multi-turbine configurations. Specifically, average velocity errors (quantified as RMSE) are typically below 0.2 m/s (relative error < 2–5%) compared to SOWFA, while achieving computational accelerations of several orders of magnitude (simulation times reduced from hours to seconds). This work presents a promising pathway towards enabling advanced, model-based optimization and control of large wind farms.

Details

Title
A Scalable Data-Driven Surrogate Model for 3D Dynamic Wind Farm Wake Prediction Using Physics-Inspired Neural Networks and Wind Box Decomposition
Author
Lu Qiuyu 1 ; Cao Yuqi 2 ; Xie Pingping 1 ; Chen, Ying 2   VIAFID ORCID Logo  ; Lin Yingming 1 

 Power Dispatch Control Center, Guangdong Power Grid Company Ltd., Gaungzhou 510699, China; [email protected] (Q.L.); [email protected] (P.X.); [email protected] (Y.L.) 
 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; [email protected] 
First page
3356
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229144864
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.