Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Microsurgery is a highly complex and technically demanding field within reconstructive surgery, with outcomes heavily dependent on meticulous planning, precision, and postoperative monitoring. Over the last five years, artificial intelligence (AI) has emerged as a transformative tool across all phases of microsurgical care, offering new capabilities in imaging analysis, intraoperative decision support, and outcome prediction. Methods: A comprehensive narrative review was conducted to evaluate the peer-reviewed literature published between 2020 and May 2025. Multiple databases, including PubMed, Embase, Cochrane, Scopus, and Web of Science, were searched using combinations of controlled vocabulary and free-text terms relating to AI and microsurgery. Studies were included if they described AI applications during the preoperative, intraoperative, or postoperative phases of microsurgical care in human subjects. Discussion: Using predictive models, AI demonstrated significant utility in preoperative planning through automated perforator mapping, flap design, and individualised risk stratification. AI-enhanced augmented reality and perfusion analysis tools improved precision intraoperatively, while innovative robotic platforms and intraoperative advisors showed early promise. Postoperatively, mobile-based deep learning applications enabled continuous flap monitoring with sensitivities exceeding 90%, and AI models accurately predicted surgical site infections, transfusion needs, and long-term outcomes. Despite these advances, most studies relied on retrospective single-centre data, and large-scale, prospective validation remains limited. Conclusions: AI is poised to enhance microsurgical precision, safety, and efficiency. However, its integration is challenged by data heterogeneity, generalisability concerns, and the need for human oversight in nuanced clinical scenarios. Standardised data collection and multicentre collaboration are vital for robust, equitable AI deployment. With careful validation and implementation, AI holds the potential to redefine microsurgical workflows and improve patient outcomes across diverse clinical settings.

Details

Title
Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation
Author
Shadid Omar 1   VIAFID ORCID Logo  ; Ishith, Seth 1   VIAFID ORCID Logo  ; Cuomo, Roberto 2   VIAFID ORCID Logo  ; Rozen, Warren M 1   VIAFID ORCID Logo  ; Marcaccini Gianluca 2   VIAFID ORCID Logo 

 Department of Plastic and Reconstructive Surgery, Peninsula Health, 2 Hastings Road, Melbourne, VIC 3199, Australia; [email protected] (O.S.); [email protected] (I.S.); [email protected] (W.M.R.) 
 Plastic and Reconstructive Surgery, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; [email protected] 
First page
4574
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20770383
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229147561
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.