Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The occurrence of anthocyanins in rice (Oryza sativa) and barley (Hordeum vulgare) varies among cultivars, with pigmented varieties (e.g., black rice and purple barley) accumulating higher concentrations due to genetic and environmental factors. The biosynthesis of anthocyanins is regulated by a complex network of structural and regulatory genes. Key enzymes in the pathway include chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT). These genes are tightly controlled by transcription factors (TFs) from the MYB, bHLH (basic helix–loop–helix), and WD40 repeat families, which form the MBW (MYB-bHLH-WD40) regulatory complex. In rice, OsMYB transcription factors such as OsMYB3, OsC1, and OsPL (Purple Leaf) interact with OsbHLH partners (e.g., OsB1, OsB2) to activate anthocyanin biosynthesis. Similarly, in barley, HvMYB genes (e.g., HvMYB10) coordinate with HvbHLH TFs to regulate pigment accumulation. Environmental cues, such as light, temperature, and nutrient availability, further modulate these TFs, influencing the production of anthocyanin. Understanding the genetic and molecular mechanisms behind the biosynthesis of anthocyanins in rice and barley provides opportunities for the development of biofortification strategies that enhance their nutritional value.

Details

Title
Occurrence, Biosynthesis, and Health Benefits of Anthocyanins in Rice and Barley
Author
ElShamey, Essam A 1   VIAFID ORCID Logo  ; Yang, Xiaomeng 2 ; Yang Jiazhen 2 ; Pu Xiaoying 2 ; Yang Li’E 2 ; Changjiao, Ke 2 ; Zeng Yawen 2   VIAFID ORCID Logo 

 Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China, Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Cairo 12619, Egypt 
 Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China 
First page
6225
Publication year
2025
Publication date
2025
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229148760
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.