This article overviews recent findings on molecular mechanisms of gene expression regulation published in the “New Sights into Bioinformatics of Gene Regulations and Structure” (
We have previously organized similar Special Issues on the bioinformatics of gene expression regulation at Frontiers in Genetics (
The key point of this Special Issue is the regulation of gene expression at the transcriptional level. Contemporary methods here include machine learning, data integration, and AI applications [4]. The articles in the current Special Issue could be classified by methods (neural networks, Alphafold, microRNA prediction) as well as by area of the study—cell lines, domestic animals, fungi, and plants.
We open this collection of papers with AI applications. Shoryu Teragawa and co-authors (Contribution 1) presented a deep learning model for DNA methylation prediction, called DeepPGD (
Kohei Uemura and Takashi Ohyama (
Kim et al. (
Riccardo Perriera and co-authors (
The following articles in this Special Issue discuss gene expression in model organisms (Contributions 5, 6, and 7). Zongchang Chen and co-authors (
The study by Qingpeng Shen and colleagues also focused on domestic animals’ growth (
Munkhzaya Byambaragchaa et al. (
Igor V. Gorbenko and colleagues (
Thus, a variety of model species has to be studied by sequencing analysis methods exploring gene expression regulation topics, including RNA studies [23]. Machine learning models and artificial intelligence applications present new trends in gene expression studies [4,24,25]. Bioinformatics faces the challenge of integrating, aligning, modeling, and simulating data in a coherent fashion to gain deeper insights into complex biological systems, data retrieval [26], as it was discussed at the recent Integrative Bioinformatics conference [27,28]. The new insights on the problems associated with bioinformatics and discovering molecular mechanisms of gene expression in plant and animal models were presented in the Special Issues devoted to works on gene expression regulation starting from schools for young scientists [29], then after BGRS series conferences [1] in Frontiers in Genetics (
This topical Special Issue “Bioinformatics of Gene Regulations and Structure–2025” (
Conceptualization, N.G.O., Y.L.O. and A.A.A.; resources, Y.L.O. and N.A.K.; writing—original draft preparation, N.G.O. and Y.L.O.; writing—review and editing, A.A.A.; supervision, N.A.K. and Y.L.O.; project administration, N.A.K.; funding acquisition, Y.L.O. and A.A.A. All authors have read and agreed to the published version of the manuscript.
The authors are grateful to all the reviewers who helped validate this thematic issue. The authors thank the BGRS/SB Organizing Committee for providing platforms for international conferences and schools on bioinformatics.
The authors declare no conflicts of interest.
Teragawa, S.; Wang, L.; Liu, Y. DeepPGD: A Deep Learning Model for DNA Methylation Prediction Using Temporal Convolution, BiLSTM, and Attention Mechanism. Int. J. Mol. Sci. 2024, 25, 8146.
Uemura, K.; Ohyama, T. Physical Peculiarity of Two Sites in Human Promoters: Universality and Diverse Usage in Gene Function. Int. J. Mol. Sci. 2024, 25, 1487.
Kim, J.; Park, Y.; Jang, M. Identification of Laccase Family of Auricularia auricula-judae and Structural Prediction Using Alphafold. Int. J. Mol. Sci. 2024, 25, 11784.
Perriera, R.; Vitale, E.; Pibiri, I.; Carollo, P.; Ricci, D.; Corrao, F.; Fiduccia, I.; Melfi, R.; Zizzo, M.; Tutone, M.; Pace, A.; Lentini, L. Readthrough Approach Using NV Translational Readthrough-Inducing Drugs (TRIDs): A Study of the Possible Off-Target Effects on Natural Termination Codons (NTCs) on TP53 and Housekeeping Gene Expression. Int. J. Mol. Sci. 2023, 24, 15084.
Chen, Z.; Li, J.; Bai, Y.; Liu, Z.; Wei, Y.; Guo, D.; Jia, X.; Shi, B.; Zhang, X.; Zhao, Z.; Hu, J.; Han, X.; Wang, J.; Liu, X.; Li, S.; Zhao, F. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players. Int. J. Mol. Sci. 2024, 25, 2506.
Shen, Q.; Gong, W.; Pan, X.; Cai, J.; Jiang, Y.; He, M.; Zhao, S.; Li, Y.; Yuan, X.; Li, J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int. J. Mol. Sci. 2023, 24, 16205.
Byambaragchaa, M.; Park, S.; Kim, S.; Shin, M.; Kim, S.; Park, M.; Kang, M.; Min, K. Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells. Int. J. Mol. Sci. 2024, 25, 7282.
Gorbenko, I.; Petrushin, I.; Shcherban, A.; Orlov, Y.; Konstantinov, Y. Short Interrupted Repeat Cassette (SIRC)—Novel Type of Repetitive DNA Element Found in Arabidopsis thaliana. Int. J. Mol. Sci. 2023, 24, 11116.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
1. Orlov, Y.L.; Baranova, A.V. Editorial: Bioinformatics of Genome Regulation and Systems Biology. Front. Genet.; 2020; 11, 625. [DOI: https://dx.doi.org/10.3389/fgene.2020.00625] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32849761]
2. Orlov, Y.L.; Baranova, A.V.; Hofestädt, R.; Kolchanov, N.A. Genomics at Belyaev conference—2017. BMC Genom.; 2018; 19, (Suppl. S3), 79. [DOI: https://dx.doi.org/10.1186/s12864-018-4476-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29504918]
3. Anashkina, A.A.; Leberfarb, E.Y.; Orlov, Y.L. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int. J. Mol. Sci.; 2021; 22, 12146. [DOI: https://dx.doi.org/10.3390/ijms222212146] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34830028]
4. Zhang, S.; Wu, L.; Zhao, Z.; Fernandez Masso, J.R.; Chen, M. Artificial Intelligence in Gerontology: Data-Driven Health Management and Precision Medicine. Adv. Gerontol.; 2024; 14, pp. 97-110. [DOI: https://dx.doi.org/10.1134/S2079057024600691]
5. Ke, J.; Zhao, J.; Li, H.; Yuan, L.; Dong, G.; Wang, G. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Comput. Biol. Med.; 2024; 174, 108330. [DOI: https://dx.doi.org/10.1016/j.compbiomed.2024.108330]
6. Zhang, Y.; Wang, Z.; Ge, F.; Wang, X.; Zhang, Y.; Li, S.; Guo, Y.; Song, J.; Yu, D.J. MLSNet: A deep learning model for predicting transcription factor binding sites. Brief. Bioinform.; 2024; 25, bbae489. [DOI: https://dx.doi.org/10.1093/bib/bbae489]
7. Strahs, D.; Barash, D.; Qian, X.; Schlick, T. Sequence-dependent solution structure and motions of 13 TATA/TBP (TATA-box binding protein) complexes. Biopolymers; 2003; 69, pp. 216-243. [DOI: https://dx.doi.org/10.1002/bip.10409]
8. Filonov, S.V.; Podkolodnyy, N.L.; Podkolodnaya, O.A.; Tverdokhleb, N.N.; Ponomarenko, P.M.; Rasskazov, D.A.; Bogomolov, A.G.; Ponomarenko, M.P. Human_SNP_TATAdb: A database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: Genome-wide analysis and use cases. Vavilovskii Zhurnal Genet. Sel.; 2023; 27, pp. 728-736. [DOI: https://dx.doi.org/10.18699/VJGB-23-85]
9. Dotsenko, P.A.; Zolotareva, K.A.; Ivanov, R.A.; Chadaeva, I.V.; Podkolodnyy, N.L.; Ivanisenko, V.A.; Demenkov, P.S.; Lashin, S.A.; Ponomarenko, M.P. Candidate SNP markers of changes in the expression levels of the human SCN9A gene as a hub gene for pain generation, perception, response and anesthesia. Vavilovskii Zhurnal Genet. Sel.; 2024; 28, pp. 808-821. [DOI: https://dx.doi.org/10.18699/vjgb-24-89]
10. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.
11. Genc, A.G.; McGuffin, L.J. Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction. Prediction of Protein Secondary Structure; Methods in Molecular Biology Clifton, N.J. Springer: Berlin/Heidelberg, Germany, 2025; 2867, pp. 121-139. [DOI: https://dx.doi.org/10.1007/978-1-0716-4196-5_7]
12. Li, S.; Li, J.; Shi, W.; Nie, Z.; Zhang, S.; Ma, F.; Hu, J.; Chen, J.; Li, P.; Xie, X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules; 2023; 13, 988. [DOI: https://dx.doi.org/10.3390/biom13060988] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37371567]
13. Ricci, D.; Cruciata, I.; Fiduccia, I.; Vitale, E.; Corrao, F.; Branchini, A.; Carollo, P.S.; Pibiri, I.; Lentini, L. Advancing Therapeutic Strategies for Nonsense-Related Diseases: From Small Molecules to Nucleic Acid-Based Innovations. IUBMB Life; 2025; 77, e70027. [DOI: https://dx.doi.org/10.1002/iub.70027] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/40420818]
14. Lentini, L.; Perriera, R.; Corrao, F.; Melfi, R.; Tutone, M.; Carollo, P.S.; Fiduccia, I.; Pace, A.; Ricci, D.; Genovese, F.
15. Xue, Q.; Du, L.; Deng, T.; Liang, M.; Li, K.; Qian, L.; Qiu, S.; Chen, Y.; Gao, X.; Xu, L.
16. Li, S.; Guo, Y.; Huo, C.; Zhu, L.; Shi, C.; Na, R.; Gu, M.; Zhang, W. Machine Learning-Based Analysis of Differentially Expressed Genes in the Muscle Transcriptome Between Beef Cattle and Dairy Cattle. Int. J. Mol. Sci.; 2025; 26, 5046. [DOI: https://dx.doi.org/10.3390/ijms26115046]
17. Yun, J.; Huang, X.; Liu, C.; Shi, M.; Li, W.; Niu, J.; Cai, C.; Yang, Y.; Gao, P.; Guo, X.
18. He, T.; Chen, Q.; Li, H.; Mao, J.; Luo, J.; Ma, D.; Yang, Z. The potential mechanism of MicroRNA involvement in the regulation of muscle development in weaned piglets by tryptophan and its metabolites. BMC Genom.; 2025; 26, 330. [DOI: https://dx.doi.org/10.1186/s12864-025-11424-0]
19. Wang, K.; Hu, Y.; Li, S.; Chen, M.; Li, Z. LncLSTA: A versatile predictor unveiling subcellular localization of lncRNAs through long-short term attention. Bioinform. Adv.; 2024; 5, vbae173. [DOI: https://dx.doi.org/10.1093/bioadv/vbae173]
20. Kim, S.H.; Byambaragchaa, M.; Park, S.H.; Park, M.H.; Kang, M.H.; Min, K.S. The N-Linked Glycosylation Asn191 and Asn199 Sites Are Controlled Differently Between PKA Signal Transduction and pEKR1/2 Activity in Equine Follicle-Stimulating Hormone Receptor. Curr. Issues Mol. Biol.; 2025; 47, 168. [DOI: https://dx.doi.org/10.3390/cimb47030168]
21. Swain, S.P.; Bisht, N.; Kumar, S. Comprehensive study of tRNA-derived fragments in plants for biotic stress responses. Funct. Integr. Genom.; 2025; 25, 70. [DOI: https://dx.doi.org/10.1007/s10142-025-01576-3]
22. Pegler, J.L.; Oultram, J.M.J.; Mann, C.W.G.; Carroll, B.J.; Grof, C.P.L.; Eamens, A.L. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. Plants; 2023; 12, 1101. [DOI: https://dx.doi.org/10.3390/plants12051101] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36903960]
23. Liu, L.; Liu, E.; Hu, Y.; Li, S.; Zhang, S.; Chao, H.; Hu, Y.; Zhu, Y.; Chen, Y.; Xie, L.
24. Chen, X.; Xu, H.; Yu, S.; Hu, W.; Zhang, Z.; Wang, X.; Yuan, Y.; Wang, M.; Chen, L.; Lin, X.
25. Sung, W.K.F. Frontiers in Biomedical Informatics. Biomed. Inform.; 2025; 1, 0001. [DOI: https://dx.doi.org/10.55092/bi20230001]
26. Chao, H.; Li, Z.; Chen, D.; Chen, M. iSeq: An integrated tool to fetch public sequencing data. Bioinformatics; 2024; 40, btae641. [DOI: https://dx.doi.org/10.1093/bioinformatics/btae641]
27. Türker, C.; Panse, C.; Sommer, B.; Friedrichs, M.; Hofestädt, R. International symposium on integrative bioinformatics 2024—Editorial. J. Integr. Bioinform.; 2024; 21, 20240051. [DOI: https://dx.doi.org/10.1515/jib-2024-0051]
28. Golebiewski, M.; Bader, G.; Gleeson, P.; Gorochowski, T.E.; Keating, S.M.; König, M.; Myers, C.J.; Nickerson, D.P.; Sommer, B.; Waltemath, D.
29. Baranova, A.V.; Orlov, Y.L. The papers presented at 7th Young Scientists School “Systems Biology and Bioinformatics” (SBB’15): Introductory Note. BMC Genet.; 2016; 17, (Suppl. S1), 20. [DOI: https://dx.doi.org/10.1186/s12863-015-0326-5]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Details


1 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia, The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
2 Department of Mathematics, Financial University Under the Government of the Russian Federation, 125167 Moscow, Russia; [email protected]
3 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia, Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
4 The Digital Health Center, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia, Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia