Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study explores a series of eco-compatible, safe, inexpensive, and recyclable catalysts for the aza-Michael reaction, an essential transformation for constructing C-N bonds. In particular, we focus on hydrothermal carbons (HCB and HCC) prepared from chestnut cupule waste under mild, aqueous conditions, offering a sustainable alternative to traditional pyrolytic methods. These carbonaceous solids, thoroughly characterized by physicochemical techniques, exhibit notable catalytic activity, completing aza-Michael reactions in as little as 5–30 min for various model substrates. Their performance was benchmarked against Montmorillonite K10, [Cho][Pro] ionic liquid, and K10+[Cho][Pro], with the latter combination and [Cho][Pro] alone giving the fastest conversions. For example, the reaction of benzylamine with acrylonitrile reached complete conversion (typically 95% yield) in five minutes using [Cho][Pro], K10+[Cho][Pro], or likewise with HCB and HCC. Although the reactions catalyzed by hydrothermal carbons did not outperform in general those using K10-[Cho][Pro] or [Cho][Pro], they proceeded rapidly and afforded good to excellent yields. Furthermore, the HCC catalyst demonstrated excellent recyclability, maintaining its activity and yield over at least five cycles. These findings underscore the potential of hydrothermal carbons as efficient green heterogeneous catalysts, combining high surface area, porosity, and reusability with strong catalytic performance and scalability, in alignment with the principles of the circular economy.

Details

Title
Catalytic Innovations in the Aza-Michael Reaction: An Experimental Benchmarking Focused on Sustainable Approaches
Author
Izquierdo, Silvia 1 ; Durán-Valle, Carlos J 2   VIAFID ORCID Logo  ; Cintas Pedro 2   VIAFID ORCID Logo  ; López-Coca, Ignacio M 1   VIAFID ORCID Logo 

 Department of Organic and Inorganic Chemistry, School of Technology, University Research Institute for Sustainable Territorial Development (INTERRA), Universidad de Extremadura, 10003 Cáceres, Spain; [email protected] 
 Department of Organic and Inorganic Chemistry, Faculty of Sciences, University Institute for Water Research, Climate Change and Sustainability (IACYS), Universidad de Extremadura, 06006 Badajoz, Spain; [email protected] 
First page
2674
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229153250
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.