Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Liquid hydrogen (LH2) storage using carbon-fiber-reinforced composite pressure vessels is facing increasing demands in aerospace engineering. However, hydrogen permeation in epoxy resin matrixes seriously jeopardizes the function and safety of the cryogenic vessels, and the micro-behavior of hydrogen permeation in epoxy resins remains mysterious. This study performed molecular dynamics (MD) simulations to investigate the hydrogen molecule permeation behaviors in two types of epoxy resin systems, with similar epoxy reins of bisphenol A diglycidyl ether (DGEBA) and different curing agents, i.e., 4,4′-diaminodiphenylmethane (DDM) and polypropylene glycol bis(2-aminopropyl ether) (PEA). The influencing factors, including the cross-linking degrees and temperatures, on hydrogen permeation were analyzed. It was revealed that increased cross-linking degrees enhance the tortuosity of hydrogen diffusion pathways, thereby inhibiting permeation. The adsorption characteristics demonstrated high sensitivity to temperature variations, leading to intensified hydrogen permeation at low temperatures. By triggering defects in the epoxy resin systems by uniaxial tensile simulation, high consistency between the simulation results and the results from helium permeability experiments can be achieved due to the micro-defects in the simulation model that are more realistic in practical materials. The findings provide theoretical insights into micro-scale permeation behavior and facilitate the development of high-performance epoxy resins in liquid hydrogen storage.

Details

Title
Molecular Dynamics Simulation of Hydrogen Permeation Behavior in Epoxy Resin Systems
Author
Gao, Chang 1 ; Chen, Hongzhi 2 ; Xu, Hao 1   VIAFID ORCID Logo  ; Wu, Zhanjun 1 ; Dong Xufeng 1   VIAFID ORCID Logo 

 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] (C.G.); [email protected] (X.D.) 
 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China; [email protected] 
First page
1755
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229155527
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.