Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Interferometric synthetic aperture radar (InSAR) plays a significant role in monitoring permafrost deformation. However, owing to environmental constraints in permafrost regions, some regions exhibit temporal incoherence, which results in deformation with fewer measurement points and difficulties with deformation automatic detection. In this study, a full-coverage deformation rate map of the 10 km buffer of the Qinghai–Tibet Engineering Corridor (QTEC) was generated by combining nine driving factors and the deformation rate of the 5 km buffer along the QTEC based on three machine learning methods. The importance of the factors contributing to ground deformation was explored. The experimental results show that support vector regression (SVR) yielded the best performance (R2 = 0.98, RMSE = 0.76 mm/year, MAE = 0.74 mm/year). The 10 km buffer of deformation data obtained not only preserved the original deformation data well, but it also filled the blank areas in the deformation map. Subsequently, we trained the Faster R-CNN model on the deformation rate map simulated by SVR and used it for the automatic detection of permafrost thaw settlement areas. The results showed that the Faster R-CNN could identify the permafrost thawing slump quickly and accurately. More than 300 deformation areas along the QTEC were detected through our proposed method, with some of these areas located near thaw slump and thermokarst lake regions. This study confirms the significant potential of combining InSAR and deep learning techniques for permafrost degradation monitoring applications.

Details

Title
Enhanced Detection of Permafrost Deformation with Machine Learning and Interferometric SAR Along the Qinghai–Tibet Engineering Corridor
Author
Fan, Peng 1   VIAFID ORCID Logo  ; Lin, Hong 2 ; Zhang Zhengjia 2   VIAFID ORCID Logo  ; Deng Heming 1 

 School of New Energy and Electrical Engineering, Hubei University, 368 Friendship Avenue, Wuchang District, Wuhan 430062, China; [email protected] (P.F.); [email protected] (H.D.) 
 School of Geography and Information Engineering, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; [email protected] 
First page
2231
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229157552
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.