Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to enhance the management and application of fault knowledge within intelligent production lines, thereby increasing the efficiency of fault diagnosis and ensuring the stable and reliable operation of these systems, we propose a fault diagnosis methodology that leverages knowledge graphs. First, we designed an ontology model for fault knowledge by integrating textual features from various components of the production line with expert insights. Second, we employed the ALBERT–BiLSTM–Attention–CRF model to achieve named entity and relationship recognition for faults in intelligent production lines. The introduction of the ALBERT model resulted in a 7.3% improvement in the F1 score compared to the BiLSTM–CRF model. Additionally, incorporating the attention mechanism in relationship extraction led to a 7.37% increase in the F1 score. Finally, we utilized the Neo4j graph database to facilitate the storage and visualization of fault knowledge, validating the effectiveness of our proposed method through a case study on fault diagnosis in CNC machining centers. The research findings indicate that this method excels in recognizing textual entities and relationships related to faults in intelligent production lines, effectively leveraging prior knowledge of faults across various components and elucidating their causes. This approach provides maintenance personnel with an intuitive tool for fault diagnosis and decision support, thereby enhancing diagnostic accuracy and efficiency.

Details

Title
Knowledge-Graph-Driven Fault Diagnosis Methods for Intelligent Production Lines
Author
Chen, Yanjun 1   VIAFID ORCID Logo  ; Zhou, Min 1 ; Zhang Meizhou 1 ; Zha Meng 1 

 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; [email protected] (Y.C.); [email protected] (M.Z.); [email protected] (M.Z.), Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China, Institute of Precision Manufacturing, Wuhan University of Science and Technology, Wuhan 430081, China 
First page
3912
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229159686
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.