Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The short-term scheduling of pumped-storage hydropower plants is characterised by high dimensionality and nonlinearity and is subject to multiple operational constraints. This study proposes an intelligent scheduling framework that integrates an Atomic Orbital Search (AOS)-optimised Long Short-Term Memory (LSTM) network with the Deep Deterministic Policy Gradient (DDPG) algorithm to minimise water consumption during the generation period while satisfying constraints such as system load and safety states. Firstly, the AOS-LSTM model simultaneously optimises the number of hidden neurons, batch size, and training epochs to achieve high-precision fitting of unit flow–efficiency characteristic curves, reducing the fitting error by more than 65.35% compared with traditional methods. Subsequently, the high-precision fitted curves are embedded into a Markov decision process to guide DDPG in performing constraint-aware load scheduling. Under a typical daily load scenario, the proposed scheduling framework achieves fast inference decisions within 1 s, reducing water consumption by 0.85%, 1.78%, and 2.36% compared to standard DDPG, Particle Swarm Optimisation, and Dynamic Programming methods, respectively. In addition, only two vibration-zone operations and two vibration-zone crossings are recorded, representing a reduction of more than 90% compared with the above two traditional optimisation methods, significantly improving scheduling safety and operational stability. The results validate the proposed method’s economic efficiency and reliability in high-dimensional, multi-constraint pumped-storage scheduling problems and provide strong technical support for intelligent scheduling systems.

Details

Title
Short-Term Optimal Scheduling of Pumped-Storage Units via DDPG with AOS-LSTM Flow-Curve Fitting
Author
Ma Xiaoyao 1 ; Pan, Hong 1   VIAFID ORCID Logo  ; Zheng, Yuan 1 ; Hang Chenyang 2 ; Wu, Xin 1 ; Li, Liting 1   VIAFID ORCID Logo 

 School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China; [email protected] (X.M.); [email protected] (X.W.); 
 NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China; [email protected] 
First page
1842
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3229159744
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.