It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study aims to develop a potential system for real-time detection of debris flow motion using a deep convolutional neural network (CNN) and image processing techniques. A system consisting of a pre-trained CNN model, NVIDIA Jetson Nano, and a camera was used to identify debris flow movement. The pre-trained CNN model was trained on an image dataset derived from 12 debris flow videos obtained from small flume tests, large flume tests, and several debris flow events. The application results of the proposed system on the flume test in the laboratory reached an F1 score of 72.6 to 100%. The real-time processing speed of the CNN model achieved from 2 to 21 frames per second (FPS) on the Jetson Nano. Both the accuracy and the processing speed of CNN model depend on the size of the video input and the input size of the model CNN. The CNN model of 320 × 320 pixels with a resolution of 800 × 480 pixels gives accuracy (F1 = 99.2%) and processing speed (FPS = 20) considered the optimal model when running the Jetson Nano device; thus, it can be applied for early detection and warning systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer