Abstract

Sentiment analysis plays a significant role in understanding public opinion, trends, and sentiments expressed on social media platforms. In this paper, we focus on performing sentiment analysis on real-time Twitter data to gain insights into the sentiments related to specific topics or events, we collect a stream of tweets based on predefined keywords or hashtags. The collected tweets undergo pre-processing steps to clean and standardize the text for sentiment analysis. We employ machine learning classify the sentiments expressed in tweets, utilizing sentiment lexicons and training data as references. Real-time sentiment analysis is performed as new tweets are collected, enabling continuous monitoring and analysis of public sentiment. The sentiment analysis results are visualized through informative visualizations such as sentiment distribution charts and sentiment trends over time. Additionally, we focus on topic-specific analysis by filtering tweets based on relevant keywords or hashtags, providing deeper insights into sentiments related to specific subjects. The paper faces challenges such as noisy and informal text, ambiguity in sentiment expression, and handling large volumes of real-time data. Addressing these challenges, we aim to develop an effective sentiment analysis system that provides valuable insights into public sentiment and supports decision-making processes in various domains.

Details

Title
Feasible Sentiment Analysis of Real Time Twitter Data
Author
Karuna, G; Pavuluri Anvesh; Chiranji, Sharath Singh; Reddy, Kommula Ruthvik; Shah, Praveen Kumar; S. Siva Shankar
Publication year
2023
Publication date
2023
Publisher
EDP Sciences
ISSN
25550403
e-ISSN
22671242
Source type
Conference Paper
Language of publication
English
ProQuest document ID
3230468777
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.