Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Medical consumable orders are characterized by diverse product types, small batch sizes, frequent orders, and high customization requirements, often leading to inefficient workshop scheduling and difficulties in meeting multiple production constraints. To address these challenges, this study proposes a bi-level optimization model for order splitting and reorganization considering multi-dimensional and multi-scale characteristics. The multi-dimensional characteristics encompass materials, processes, equipment, and work efficiency, while the multi-scale aspects involve finished products, components, assemblies, and parts. At the upper level, the model optimizes order task splitting by refining splitting strategies and preprocessing constraints to generate high-quality input for the reorganization phase. The lower level optimizes sub-task prioritization, batch sizes, and resource scheduling to develop a production plan that balances cost and efficiency. Subsequently, to solve this bi-level optimization problem, a hybrid bi-objective optimization algorithm is designed, integrating a collaborative iterative strategy to enhance solution efficiency and quality. Finally, a case study and comparative experiments validate the practicality and effectiveness of the proposed model and algorithm.

Details

Title
Bi-Level Collaborative Optimization for Medical Consumable Order Splitting and Reorganization Considering Multi-Dimensional and Multi-Scale Characteristics
Author
Jiang, Peng 1 ; Guo Shunsheng 1 ; Luo, Xu 2 

 School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China; [email protected] (P.J.); [email protected] (S.G.), Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China 
 Hubei Digital Manufacturing Key Laboratory, Wuhan 430070, China 
First page
7627
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233049830
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.