Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, relevant rice cultivation data were collected through a local survey, and the life cycle assessment (LCA) method was employed to quantify greenhouse gas (GHG) emissions from rice production on consolidated land in the Red River Delta (RRD). Systematic sampling was used in face-to-face interviews with 45 rice farming households in a representative commune of Hai Duong province. Specific GHG emissions were significantly higher in the summer crop (averaged at 11.4 t CO2-eq/ha or 2.2 t CO2-eq/t grain) than in the spring crop (6.8 t CO2-eq/ha or 1.2 t CO2-eq/t grain). Methane was a dominant GHG emitted from paddy fields, contributing 84% of the total emissions of CO2-eq in the summer crop and 73% in the spring crop. Fertilizer use and N2O emissions accounted for 9% of emissions in the summer crop and 16% in the spring crop. Energy consumption for machinery and irrigation added a further 4% and 8%, respectively. Annually, as of 2023, the rice production activities in the RRD release 7.3 Tg of CO2-eq (100 years), a significant contribution to the national GHG emissions. GHG emissions under alternative scenarios of rice straw management were assessed. This study highlights the role of land consolidation in improving water management, which contributes to lowering emissions. Based on the findings, several mitigation measures could be identified, including improved irrigation practices, optimized fertilizer use, and the promotion of sustainable rice straw management practices.

Details

Title
A Survey-Based Emission Inventory of Greenhouse Gases Released from Rice Production on Consolidated Land in the Red River Delta of Vietnam
Author
Hai Van Dinh Thi 1 ; Oanh Nguyen Thi Kim 2 ; Yen Nguyen Thi Bich 1   VIAFID ORCID Logo 

 Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Hanoi 131000, Vietnam; [email protected] 
 Center for Nexus of Air Quality, Health, Ecosystem, and Climate, Asia Institute of Technology, Pathumthani 12120, Thailand; [email protected] 
First page
794
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233083223
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.