1. Introduction
Primary central nervous system lymphoma (PCNSL) is a rare form of aggressive, extra-nodal non-Hodgkin lymphoma, accounting for about 2% of all primary central nervous system (CNS) tumors [1]. It can involve the brain, spinal cord, leptomeninges, and the vitreoretinal compartment. Histopathological and immunohistochemical examination of brain biopsy material is the gold standard for diagnosing PCNSL, usually requiring stereotactic biopsy [2]. This neurosurgical procedure carries a risk of long-term morbidity, as well as a mortality rate between 0.8% and 2.2% [3,4]. Sampling error occurs in about 10% of cases [5]. Biopsy may be unfeasible due to lesion location, size, or comorbidities. Even when feasible, it remains burdensome and costly. Altogether, there is a clinical need for—ideally less expensive and non-invasive—alternatives for brain biopsy.
Analyses of cerebrospinal fluid (CSF) using cytomorphology or flow cytometry are such alternative diagnostic methods [6]. CSF cytomorphology can provide definite diagnosis by recognition of abnormal lymphoid cells [7], while flow cytometry has further enhanced the diagnostic value of CSF analysis in CNS lymphoma [8,9,10]. Recent guidelines by the European Association of Neuro-Oncology (EANO) and the European Hematology Association (EHA)/European Society for Medical Oncology (ESMO) recommend CSF analysis only as diagnostic module if biopsy is not feasible, as biopsy favors a precise lymphoma classification and CSF analysis could delay diagnosis due to limited diagnostic reliability [11,12]. In these guidelines, it is advised to perform a lumbar puncture only for examination of potential leptomeningeal involvement of patients with a final diagnosis based on biopsy. Hence, there are different thoughts about the role of CSF analysis in PCNSL: as a diagnostic tool in every patient suspected of PCNSL, which may replace a diagnosis from biopsy; as a diagnostic tool solely when biopsy is not technically feasible; or as a tool to detect leptomeningeal involvement to plan treatment strategies after tissue diagnosis by biopsy.
There has been limited systematic investigation into its diagnostic value in patients suspected of PCNSL. In this systematic review, we provide a comprehensive overview of data concerning the value of current standard CSF diagnostics (cytology and flow cytometry) in patients with PCNSL. Data on the diagnostic accuracy of CSF analysis, particularly its specificity, are largely missing, consistent with findings from a previously reported meta-analysis examining CSF involvement in lymphoid neoplasms [13]. That review reported, across three studies, high specificity for both cytology and flow cytometry. Given this assumed high specificity, aligned with clinical practice, we focus on (a) the detection rate of cytology and flow cytometry in current practice for diagnosing PCNSL; and (b) the proportion of diagnoses based on CSF analysis. Through this, we aim to quantify the current clinical value of CSF analysis for the diagnosis of PCNSL.
Certain biomarkers in CSF have shown promising diagnostic value for PCNSL, particularly the myeloid differentiation factor 88 (MYD88) L265P mutation in cell-free DNA (MYD88-cfDNA) and interleukin-10 (IL10) [12]. However, these markers have not been incorporated into most local guidelines due to the limited evidence base. Consequently, we did not include these markers in this review of current CSF diagnostics for PCNSL. Furthermore, a comprehensive review of new biomarkers has been published previously [14].
We also conducted a time-shift analysis to investigate whether this reported data changes over time. Finally, we addressed whether a second or third lumbar puncture is of added diagnostic value for PCNSL diagnosis.
2. Materials and Methods
This systematic meta-analysis was conducted following the recommended guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [15]. Ethical committee approval was not required. The protocol for the systematic review of our study was not registered for PROSPERO.
2.1. Search Strategy and Study Selection
A literature search of the PubMed and Embase databases was conducted, with the search limited to articles published up to 6 August 2024. The End-Note X9 library was used to remove any duplicates. The search strategy utilized a combination of keywords related to PCNSL and CSF analysis. We added keywords related to treatment studies of PCNSL, since these studies may include information on the diagnostic process of PCNSL patients. The search strategy is outlined in Table S1.
The screening process was conducted by one author (JvR), who reviewed the titles and abstracts of the retrieved records and evaluated them for eligibility. This was followed by a full-text analysis of potentially relevant studies to check if they met the inclusion criteria. This analysis was performed by two authors (JvR and PB), and any disagreements regarding study eligibility were resolved through discussion with other authors (TJS and PW). In addition, the reference lists of all the articles were checked by snowballing techniques to detect additional studies not found by the electronic search.
2.2. Eligibility Criteria
The objective was to collect articles that contained the predefined domain, determinant, and outcome. Domain: patients (age ≥ 18 years) diagnosed with PCNSL based on histopathological confirmation (biopsy or resection) OR diagnosis based on CSF analysis. Determinant: information regarding CSF analysis (including cytology and/or flow cytometry). Outcome: diagnosis of PCNSL.
We included studies that contained data on adult (age ≥ 18 years) patients who (a) had a final diagnosis of PCNSL, (b) had available data on whether CSF analysis was performed and what type, and (c) if CSF analysis was performed, had available final results.
Only original (observational) cohort studies and case studies with a minimum of five PCNSL patients were eligible for inclusion. Original studies only focusing on lymphoma localization outside the CNS, recurring PCNSL, immunocompromised patients, and/or primary vitreoretinal lymphoma (PVRL) were excluded.
2.3. Data Extraction and Assessment of Study Quality
The two reviewers (JvR and PB) independently extracted relevant data from the papers included after the full-text analysis and simultaneously conducted a risk-of-bias analysis of all studies. The full-text analysis included recording the following information, if available: Publishing details: database, first author, and year published. Study characteristics: location(s), study type (retrospective or prospective), single or multicenter data collection, and period of enrolment. PCNSL data: total number of patients with PCNSL and inclusion method (diagnosis). Cerebrospinal fluid evaluation: positive results per cytology assessment, positive results per flow cytometry assessment, positive results from either method of assessment, number of patients diagnosed based on CSF analysis (conducted in patients with suspected PCNSL based on clinical and/or radiological findings), mention of and, if available, results of a second and/or third lumbar puncture.
In most studies, information regarding the percentage of patients whose diagnosis of PCNSL was based on CSF analysis was lacking. Therefore, the corresponding authors of these articles were contacted by email for this information.
The risk of bias was investigated with the use of the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) guidelines to assess the quality of primary diagnostic accuracy within the selected studies [16]. Each article was categorized as having high or low risk across four domains: (1) patient selection, (2) index tests (1: CSF cytology, 2: CSF flow cytometry), (3) reference standard, and (4) flow and timing. An overall risk-of-bias score was determined as high if 50% or more of the domains were categorized as having a high risk of bias. The assessment of potential bias was carried out by two independent authors (JvR and PB). In case of any disagreements, they held discussions with two additional authors (TJS and PW) to reach a consensus. No studies were excluded from the analysis solely based on risk-of-bias assessment.
A final screening was conducted by authors JvR and PB to exclude overlap between studies that were reported by the same research groups in overlapping periods of enrolment. If a possible overlap of enrolled patients was unclear, the corresponding authors of these articles were contacted by email. If overlap remained unclear (e.g., no reaction of the corresponding author was obtained), the articles with older publication dates were excluded from the final review.
2.4. Statistical Analysis
Primary data was used in a descriptive manner to estimate the percentage of CSF examination performed, specifically for cytology and flow cytometry, and the percentage of patients diagnosed with PCNSL was estimated through CSF examination. The detection rate estimates of the diagnostic tests from the included studies were pooled to conduct a meta-analysis using a random-effects model with the DerSimonian and Laird variance estimator [17]. Heterogeneity was estimated with Cochran’s Q test, mainly the I2 and χ42 statistics.
A time-shift analysis was conducted using meta-logistic regression to investigate a possible association between positive CSF findings and diagnoses using positive CSF results over the study period. The results are illustrated in meta-regression scatter plots.
The analyses were conducted in the R statistical software bundle, version 4.3.0, with the package ‘meta’, version 6.2-1, and Microsoft Excel 365.
3. Results
3.1. Study Selection
As can be seen in the flowchart of screened articles (Figure 1), the initial search resulted in 8103 studies, of which 2673 were duplicates. A total of 3976 studies were excluded after title–abstract screening, after which 1454 studies were analyzed for full-text assessment. Fifteen of these articles could not be retrieved. After full-text screening, a total of 1297 articles were excluded for the following reasons: (1) no information on CSF analysis; (2) limited information on CSF analysis, primarily no information on the total number of patients who were examined by CSF analysis; (3) the study population was not solely composed of PCNSL patients or included fewer than five patients with PCNSL; (4) other reasons, such as the article not being an original study. Finally, two records were added by snowballing techniques.
3.2. Study Characteristics
We finally included 144 studies in this review. The characteristics of all the included studies, as mentioned in the methods, are given in Table 1. The time range of the pooled studies was from 1975 to 2024. There has been an increase in the number of included studies per decade: 22% of the studies were published between 1975 and 2000, 27% between 2000 and 2010, 29% between 2010 and 2020, and 22% between 2020 and 2024. There were 90 retrospective cohorts, 50 prospective cohorts, and 4 studies that used both retrospective and prospective data. Most studies were included from Asian (36%), European (32%), and North American (21%) countries.
The final studies comprised patients diagnosed with PCNSL, with sample sizes ranging from 6 to 1002 patients. In summary, 72.2% of patients (6855 patients of 9493 patients diagnosed with PCNSL) had CSF examination. In most studies, no information was available for results on cytology or flow cytometry in individual cases. For example, in the largest study included [18], CSF examination was reported to be positive in 123 out of 594 patients (20.7%), but without separate information on flow cytometry or cytological examination results. Almost all the included articles (138 out of 144 articles, 95.8%) reported information on cytology. Flow cytometry results were reported in only 14 out of 144 (9.7%) articles.
Only 50 (34.7%) articles of the included studies reported that the final diagnosis of PCNSL could be solely based on CSF analysis. This information could only be retrieved from 43 articles because 7 articles mentioned that a final diagnosis of PCNSL could be solely based on CSF analysis but did not provide further information. In these cohorts, the final diagnosis was based solely on CSF in 5.8% (160/2741) of patients. In most other cases, diagnosis was confirmed by histological examination of brain biopsy samples, or, in very few cases, diagnosis was based on vitreous examination. Table 1
Study characteristics of 144 included studies.
Study | Country | Study Design | Data Collection Site | Period Years | Total Number of Patients with PCNSL | Cytology n/N | FCM n/N | Cytology or FCM n/N | Diagnosed Based on CSF | Inclusion Method |
---|---|---|---|---|---|---|---|---|---|---|
Feldheim 2024 [19] | Germany | R | S | 2008–2022 | 148 | 2/65 | 6/32 | U | NA | H |
Tatarczuch 2024 [20] | Australia | R | M | 2009–2018 | 190 | NA | NA | 25/113 | U | H |
Yi 2024 [21] | Korea | P | M | 2018–2020 | 35 | 3/35 | NA | 3/35 | U | H |
Janopaul-Naylor 2024 [22] | USA | R | S | 2002–2021 | 95 | 18/60 | NA | 18/60 | U | H |
Batchelor 2024 [23] | USA | P | M | 2012–2017 | 108 | 8/88 | NA | 8/88 | U | H |
Zhang 2024 [24] | China | R | S | 2003–2021 | 69 | NA | NA | 9/67 | U | U |
Schorb 2024 [25] | Germany | P | M | 2017–2020 | 57 | 3/46 | NA | 3/46 | U | H or C or V |
Chuang 2023 [26] | Taiwan | R | S | 1995–2021 | 124 | 11/116 | NA | 11/116 | U | H |
Bairey 2023 [27] | Israel | R | M | 2001–2020 | 222 | 24/155 | NA | 24/155 | 7/221 | H or C or V |
Ma 2023 [28] | China | P | S | - | 33 | 21/33 | NA | 21/33 | U | U |
Rozenblum 2023 [29] | France | P | M | 2016–2021 | 54 | 12/41 | NA | 12/41 | 4/41 | H or C or V |
Zhong 2023 [30] | China | R | M | 2007–2016 | 96 | 1/96 | NA | 1/96 | 1/96 | H or C |
Li 2023 [31] | China | R | S | 2012–2022 | 64 | NA | 3/27 | 3/27 | U | H |
Lin 2023 [32] | China | R | S | 2018–2019 | 77 | 26/73 | NA | 26/73 | U | H or C |
Bazer 2023 [33] | USA | R | S | 2010–2020 | 13 | 2/9 | 0/9 | 2/9 | 0/9 | H |
Ebrahimi 2023 [34] | Iran | R | S | 2011–2018 | 58 | 6/58 | NA | 6/58 | NA | H |
Wang 2023 [35] | China | R | S | U | 10 | 1/10 | 1/10 | 1/10 | U | H |
Das 2022 [36] | India | R | S | 2013–2019 | 99 | 7/72 | 10/72 | 10/72 | U | H |
Lage 2022 [37] | Brazil | R | S | 2000–2021 | 47 | 9/47 | NA | 9/47 | U | H |
Ferreri 2022 [38] | 5 countries | P | M | 2010–2014 | 219 | 34/162 | NA | 34/162 | U | H |
Vs 2022 [39] | India | R | S | 2011–2020 | 42 | 2/42 | NA | 2/42 | U | H |
Yoon 2022 [40] | South Korea | R | S | 2012–2021 | 106 | 23/67 | NA | 23/67 | U | H |
Luo 2022 [41] | China | P | S | 2011–2018 | 35 | 0/35 | NA | 0/35 | NA | H |
Sun 2021 [42] | China | R | S | 2001–2018 | 59 | U | U | 27/59 | U | H |
Lee 2021 [43] | South Korea | R | S | 2015–2019 | 22 | 2/22 | NA | 2/22 | U | H |
Yamagishi 2021 [44] | Japan | R | S | 2009–2019 | 39 | 1/39 | NA | 1/39 | U | H |
Gupta 2021 [45] | USA | P/R | M | 2010–2019 | 159 | 7/110 | 7/104 | U | 6/110 | H or C |
Ferreri 2021 [46] | Italy | P | S | 2016–2020 | 36 | 5/36 | NA | 5/36 | U | H |
Seidel 2020 [47] | Germany | R | S | 2015–2019 | 43 | 6/26 | NA | 6/26 | U | H |
Shao 2020 [48] | China | R | S | 2013–2017 | 66 | 25/66 | NA | 25/66 | 3/66 | H or C |
Houillier 2020 [18] | France | R | M | 2011–2016 | 1002 | U | U | 123/594 | 33/594 | H or C |
Sethi 2019 [49] | USA | R | M | 2000–2016 | 53 | 6/51 | NA | 6/51 | U | H |
Lin 2019 [50] | Taiwan | R | S | 2002–2018 | 133 | 5/74 | NA | 5/74 | U | H or C or V |
Hiemcke-Jiwa 2019 [51] | Netherlands | P/R | S | 2016–2018 | 22 | 2/13 | 8/19 | 10/21 | 2/9 | H or C or V |
Rimelen 2019 [52] | France | R | S | 2016–2018 | 9 | 5/9 | 6/9 | 6/9 | 4/9 | H or C |
Mao 2019 [53] | China | R | S | 2004–2017 | 91 | 0/31 | U | 0/31 | 0/31 | H |
Nayyar 2019 [54] | USA | R | S | U | 64 | U | U | 14/41 | U | H |
Patekar 2019 [55] | India | R | S | 2001–2017 | 99 | 13/82 | NA | 13/82 | NA | H |
Bromberg 2019 [56] | 3 countries | P | M | 2010–2016 | 199 | 17/139 | NA | 17/139 | 17/139 | H or C |
Mizutani 2018 [57] | Japan | R | S | 2012–2017 | 9 | 0/6 | NA | 0/6 | U | H |
Zorofchian 2018 [58] | USA | R | M | 2010–2017 | 15 | 0/8 | 4/9 | 4/11 | U | H |
Ikeguchi 2018 [59] | Japan | R | S | 2006–2016 | 8 | 0/8 | NA | 0/8 | U | H |
Hottenrott 2018 [60] | Germany | R | S | 2015–2017 | 68 | 1/44 | 4/53 | U | U | H or C |
Nam 2018 [61] | South Kora | P | S | 1996–2015 | 154 | 19/131 | NA | 19/131 | U | H |
Ahn 2017 [62] | South Kora | R | S | 1998–2012 | 77 | 4/60 | NA | 4/60 | U | H |
Park 2017 [63] | South Korea | R | S | 2002–2012 | 62 | 6/57 | NA | 6/57 | U | H |
Puligundla 2017 [64] | Inda | R | S | 2005–2016 | 42 | 6/38 | NA | 6/38 | U | H |
Jung 2017 [65] | South Korea | R | M | 2001–2015 | 62 | 10/36 | NA | 10/36 | U | H |
Fan 2017 [66] | China | R | S | 2007–2016 | 100 | 11/54 | NA | 11/54 | U | H |
Cerqua 2016 [67] | Italy | R | S | U | 28 | 6/21 | NA | 6/21 | U | H |
Zhang 2016 [68] | China | R | S | 2006–2011 | 28 | 0/28 | NA | 0/28 | U | H |
Jang 2016 [69] | South Korea | R | S | 2003–2014 | 81 | 9/53 | NA | 9/53 | U | U |
Liu 2015 [70] | China | R | S | 2010–2014 | 18 | 4/18 | NA | 4/18 | U | U |
Omuro 2015 [71] | France | P | M | 2007–2010 | 95 | 23/78 | NA | 23/78 | U | H or C or V |
Pulczynski 2015 [72] | Multi | P | M | 2007–2010 | 66 | 8/49 | NA | 8/49 | NA | H |
Sasagawa 2015 [73] | Japan | P | S | 2008–2014 | 15 | 1/15 | NA | 1/15 | NA | H |
Liu 2015 [74] | China/Canada | R | M | 2012–2013 | 8 | 3/8 | 4/8 | 4/8 | U | U |
Olivier 2014 [75] | France | P | M | 2000–2005 | 35 | 1/23 | NA | 1/23 | U | U |
Ferreri 2014 [76] | Italy | P | M | 2000–2004 | 41 | 3/36 | NA | 3/36 | 0/36 | H or C or V |
Tao 2013 [77] | China | R | S | 2005–2009 | 17 | 0/15 | NA | 0/15 | U | H |
He 2013 [78] | China | R | S | 1996–2011 | 62 | 8/62 | NA | 8/62 | U | H |
Salamoon 2013 [79] | Syria | P | S | 2006–2007 | 40 | 8/40 | NA | 8/40 | U | H |
Rubenstein 2013 [80] | USA/Italy | P | M | U | 38 | 5/37 | 4/20 | 7/38 | U | U |
Korfel 2012 [81] | Germany | P | M | 2000–2009 | 365 | 44/361 | NA | 44/361 | 4/361 | H or C |
Sasayama 2012 [82] | Japan | P/R | S | 2004–2011 | 31 | 0/22 | NA | 0/22 | U | U |
Wieduwilt 2012 [83] | USA | P | S | 2001–2006 | 31 | 6/26 | NA | 6/26 | U | U |
Gerard 2011 [84] | Canada | P | S | 1997–2006 | 23 | 6/21 | NA | 6/21 | 2/21 | H or C or V |
Laack 2011 [85] | USA | P | M | 1995–2000 | 36 | 1/13 | NA | 1/13 | U | H or C or V |
Omuro 2011 [86] | France | R | M | 1994–2003 | 64 | 6/55 | NA | 6/55 | 5/55 | H or C or V |
Pasricha 2011 [87] | India | R | S | 1997–2009 | 66 | 1/48 | NA | 1/48 | NA | H |
Ferreri 2011 [88] | Italy/Swiss | P | M | 2008 | 20 | 3/14 | NA | 3/14 | U | H or C or V |
Schoers 2010 [10] | Germany | P | U | 2008–2010 | 23 | 3/23 | 5/23 | 6/23 | U | H |
Pels 2010 [89] | Germany | P | M | 1995–2001 | 88 | 7/78 | NA | 7/78 | U | U |
Hohaus 2009 [90] | Italy | R | S | 1995–2004 | 41 | 6/30 | NA | 6/30 | 2/30 | H or C |
Agarwal 2009 [91] | India | R | S | 2003–2006 | 26 | 0/25 | NA | 0/25 | U | H |
Ferreri 2009 [92] | Multiple | P | M | 2004–2007 | 79 | 4/69 | NA | 4/69 | U | H or C or V |
Angelov 2009 [93] | USA | R | M | 1982–2005 | 149 | 11/121 | NA | 11/121 | U | H or C or V |
Illerhaus 2009 [94] | Germany | P | M | 1998–2004 | 29 | 2/11 | NA | 2/11 | U | H |
Kiewe 2008 [95] | Germany | R | S | 1994–2005 | 72 | 6/34 | NA | 6/34 | 2/34 | H or C or V |
Haldorsen 2007 [96] | Norway | R | M | 1989–2003 | 98 | 5/41 | NA | 5/41 | 2/41 | H or C |
Yamanaka 2007 [97] | Japan | P | S | 2003–2006 | 11 | 2/11 | NA | 2/11 | 2/11 | H or C |
Silvani 2007 [98] | Italy | P | S | U | 38 | 0/38 | NA | 0/38 | U | H |
Quek 2006 [99] | Singapore | R | S | 1990–2005 | 37 | 5/23 | NA | 5/23 | U | U |
Kawamura 2006 [100] | Japan | R | M | 1995–1999 | 46 | 8/40 | NA | 8/40 | U | H |
Omuro 2005 [101] | USA MSKCC | R | S | 1985–2000 | 183 | 56/156 | NA | 56/156 | U | U |
Brevet 2005 [102] | France | P | S | 1998–2002 | 6 | 1/6 | NA | 1/6 | U | H |
Yamanaka 2005 [103] | Japan | P | M | 1996–2003 | 32 | 9/32 | NA | 9/32 | 4/32 | H or C |
Hodson 2005 [104] | UK | R | S | 1995–2003 | 55 | 3/21 | NA | 3/21 | U | H |
Korfel 2005 [105] | Germany | P | M | 1998–2000 | 56 | 8/45 | NA | 8/45 | 3/45 | H or C |
Dubuisson 2004 [106] | Belgium | R | S | 1987–2002 | 32 | 6/11 | NA | 6/11 | 1/11 | H or C |
Bessell 2004 [107] | Spain/UK | P/R | M | 1986–2001 | 72 | 4/36 | NA | 4/36 | NA | H |
Caroli 2004 [108] | Italy | R | S | 1977–1997 | 22 | 4/5 | NA | 4/5 | U | H |
Poortmans 2003 [109] | Europe | P | M | 1997–2002 | 52 | 7/43 | NA | 7/43 | U | H or C |
Abrey 2003 [110] | USA/Canada | P | M | U | 28 | 3/28 | NA | 3/28 | U | H |
Ishikawa 2003 [111] | Japan | R | S | 1981–1999 | 33 | 9/33 | NA | 9/33 | 4/33 | H or C |
Dabaja 2003 [112] | USA | P | S | 1994–1996 | 12 | 1/12 | NA | 1/12 | U | H |
Choi 2003 [113] | South Korea | R | S | 1995–2001 | 42 | 7/39 | NA | 7/39 | U | H |
Cheng 2003 [114] | Canada | R | S | 1998–2002 | 7 | 0/7 | NA | 0/7 | U | H or V |
Batchelor 2003 [115] | USA | P | M | 1998–1999 | 25 | 3/14 | NA | 3/14 | 1/14 | H or C |
Braaten 2003 [116] | USA | R | S | 1988–2001 | 33 | 3/11 | NA | 3/11 | U | H or C or V |
Ferreri 2003 [117] | M | R | M | 1980–1999 | 378 | 38/241 | NA | 38/241 | 14/241 | H or C or V |
DeAngelis 2002 [118] | M | P | M | U | 98 | 17/81 | NA | 17/81 | U | H or C or V |
Depil 2002 [119] | France | R | S | 1994–2000 | 34 | 4/29 | NA | 4/29 | U | U |
Calderoni 2002 [120] | Switzerland | R | S | U | 14 | 0/6 | NA | 0/6 | U | H |
Shibata 2002 [121] | Japan | R | M | 1998 | 22 | 2/10 | NA | 2/10 | U | H |
Goldkuhl 2002 [122] | Nordic countries | P | M | 1997–1999 | 30 | 5/30 | NA | 5/30 | 1/30 | H or C or V |
Gleissner 2002 [123] | Germany | R | M | 1998–2001 | 76 | 6/74 | NA | 6/74 | U | U |
Herrlinger 2001 [124] | Germany | R | S | 1991–1997 | 28 | 7/20 | NA | 7/20 | 1/20 | H or C or V |
Mead 2000 [125] | UK | P | M | 1988–1995 | 53 | 4/34 | NA | 4/34 | U | H |
Zylber-Katz 2000 [126] | Israel | P | S | U | 12 | 1/12 | NA | 1/12 | U | H |
O’Brien 2000 [127] | Australia/New Zealand | P | M | 1991–1997 | 46 | 3/42 | NA | 3/42 | U | H |
Ng 2000 [128] | Australia | R | S | 1995–1998 | 10 | 2/6 | NA | 2/6 | U | U |
Wu 1999 [129] | South Korea | R | S | 1981–1997 | 40 | 3/25 | NA | 3/25 | U | H |
Hiraga 1999 [130] | Japan | P | S | 1992–1998 | 29 | 5/23 | NA | 5/23 | U | H |
Guha-Thakurta 1999 [131] | USA | R | S | 1993–1998 | 31 | 2/24 | 2/13 | 3/24 | 1/24 | H or C or V |
Boiardi 1999 [132] | Italy | P | S | 1989–1994 | 28 | 2/28 | NA | 2/28 | U | H |
Sandor 1998 [133] | USA | P | S | U | 14 | 7/14 | NA | 7/14 | U | H |
Corry 1998 [134] | Australia | R | S | 1982–1994 | 62 | 10/34 | NA | 10/34 | U | H |
Cheng 1998 [135] | Taiwan | P | S | 1991–1997 | 8 | 2/8 | NA | 2/8 | U | H |
Brada 1998 [136] | UK | P | S | 1986–1996 | 31 | 8/26 | NA | 8/26 | 3/26 | H or C or V |
Blay 1998 [137] | France | R | M | 1993–1995 | 226 | 25/157 | NA | 25/157 | 5/157 | H or C |
Laperriere 1997 [138] | Canada | R | S | 1979–1988 | 49 | 1/17 | NA | 1/17 | U | H |
Glass 1996 [139] | U | P | U | 1990–1993 | 18 | 2/14 | NA | 2/14 | 2/14 | H or C or V |
Schultz 1996 [140] | USA/Canada | P | M | 1988–1992 | 52 | 6/45 | NA | 6/45 | U | H |
Schaller 1996 [141] | USA | R | S | U | 27 | 2/11 | NA | 2/11 | U | H |
Krogh-Jensen1995 [142] | Denmark | R | M | 1983–1994 | 48 | 2/5 | NA | 2/5 | 1/5 | H or C |
Sarazin 1995 [143] | France | R | S | 1989–1993 | 22 | 2/22 | NA | 2/22 | U | H |
Blay 1995 [144] | France | P | S | 1983–1994 | 25 | 2/25 | NA | 2/25 | U | H |
Grangier 1994 [145] | Switzerland | R | S | 1974–1990 | 27 | 2/15 | NA | 2/15 | U | H |
Miller 1994 [146] | USA | R | S | 1958–1989 | 104 | 7/49 | NA | 7/49 | U | H |
Selch 1994 [147] | USA | R | S | 1977–1992 | 24 | 5/22 | NA | 5/22 | 4/22 | H or C |
Glass 1994 [148] | USA | P | S | 1983–1990 | 25 | 8/24 | NA | 8/24 | 5/24 | H or C |
Hayakawa 1994 [149] | Japan | R | M | 1970–1988 | 170 | 9/42 | NA | 9/42 | U | H or C |
Liang 1993 [150] | U | P | U | 1988–1991 | 9 | 3/9 | NA | 3/9 | 0/9 | H |
Fusejima 1992 [151] | Japan | R | S | 1976–1989 | 32 | 11/30 | NA | 11/30 | 0/30 | H |
Remick 1990 [152] | USA | R | S | 1980–1989 | 13 | 4/9 | NA | 4/9 | 3/9 | H or C |
Michalski 1990 [153] | USA | R | S | 1966–1988 | 36 | 4/22 | NA | 4/22 | 1/22 | H or C |
Brada 1990 [154] | UK | R | S | 1963–1988 | 35 | 5/16 | NA | 5/16 | 3/16 | H or C |
Socie 1990 [155] | France | R | M | 1979–1987 | 35 | 4/13 | NA | 4/13 | 0 | H |
Grote 1989 [156] | USA | R | S | 1974–1986 | 12 | 2/11 | NA | 2/11 | 2/11 | H or C |
Pollack 1989 [157] | USA | R | S | 1976–1986 | 27 | 5/10 | NA | 5/10 | 0/10 | H |
Vakili 1986 [158] | USA | R | S | 1964–1982 | 26 | 1/14 | NA | 1/14 | 0/14 | H |
Bogdahn 1986 [159] | Germany | R | S | U | 10 | 7/8 | NA | 7/8 | 5/8 | H or C |
Jellinger 1975 [160] | Austria/Hungary | R | M | 1955–1975 | 68 | 11/40 | NA | 11/40 | U | H |
Abbreviations: PCNSL = primary central nervous system lymphoma; FCM = flow cytometry; CSF = cerebral spinal fluid; U = unknown; NA = not applicable; R = retrospective; P = prospective; S = single center; M = multicenter; n/N = positive cases/total tested; H = histopathological; C = CSF; V = vitreous.
3.3. Risk of Bias
A summary of the risk-of-bias analysis is provided in Table S2. The percentages of articles with a high risk of bias for the four domains are as follows: (1) 64.6% for patient selection; (2) 77.5% for index tests (combining cytology and flow cytometry); (3) 41.7% for reference standard; and (4) 50.0% for flow and timing. Overall, 75.7% of the studies (109/144) were classified as having a high risk of bias. The percentages of articles with a high risk of bias differed between prospective cohorts (64.0%) and retrospective cohorts (78.9%), but this difference was not statistically significant (p = 0.07, Fisher’s exact test).
3.4. Meta-Analysis
According to the random-effects model in the forest plot of the meta-analysis, the overall pooled detection rate of positive CSF was 18% (95% CI: 16–20%; I2 = 67%) (Figure S1). The overall pooled detection rate for positive cytology was 17% (95% CI: 15–19%; I2 = 65%), while for flow cytometry, it was 20% (95% CI: 13–30%; I2 = 67%) (Figures S2 and S3). Meta-analysis revealed that the proportion of diagnoses based solely on CSF analysis was 8% (95% CI: 6–11%; I2 = 60%) (Figure 2).
3.5. Time-Shift Analysis
A meta-logistic regression was plotted, expressing the outcome of positive CSF results as a probability percentage over the period of the study (Figure S4). Similarly, a regression was conducted to define the probability of PCNSL diagnosis using positive CSF results (Figure S5). As can be seen in Figure S4, the values of the logistic regression coefficients were found to be −0.007 for a positive CSF result (95% CI: −0.001–−0.013; p = 0.029) and −0.023 for diagnosis based on the CSF result (95% CI: −0.007–−0.038; p = 0.004) (Figure S5). This indicates that over the included time period, the probability of a positive CSF result was 0.7% lower than that of a negative result. For diagnoses based on CSF results, this probability was 2.3% lower.
3.6. Repeated Lumbar Punctures
Only 2 out of 144 articles contained information regarding repeated CSF analysis [45,51]: Gupta et al. [45] reported 110 patients undergoing CSF analysis, with 13 patients (11.8%) receiving a second lumbar puncture (zero positive results for cytology or flow cytometry), 5 patients receiving a third lumbar puncture (one positive result, both on cytology and flow cytometry), and 1 patient receiving a fourth and fifth lumbar puncture (both without positive results). All CSF samples were taken prior to diagnosis. Hiemcke-Jiwa et al. [51] reported 22 patients undergoing CSF analysis, with five patients (22.7%) receiving a second lumbar puncture, of which three showed a positive result. For all three patients with a positive second result, the first lumbar puncture already showed a positive result. Hence, there was no added value. The reason for a second lumbar puncture was not stated; it was only noted that all CSF analyses were diagnostic.
4. Discussion
We performed a systematic review and meta-analysis of empirical studies looking into the value of standard CSF diagnostics (cytology and flow cytometry) for the diagnosis of PCNSL. These data serve to summarize the current ‘status quo’ of CSF examination in this context: current potential of well-established techniques, as well as actual use. Only 5.8% of PCNSL patients were diagnosed by CSF analysis, though 17.2% of the tested patients showed positive CSF results. Meta-analysis showed a pooled detection rate of 8% for diagnosis and 18% for positive CSF results. The discrepancy between the detection rate of positive CSF results and the percentage of diagnoses made using these results shows the gap in the potential of routine CSF analysis. Time-shift analysis indicates a decreasing probability of positive CSF results over time. Data on repeated lumbar punctures are scarce and were reported in only 2 of 144 articles. The percentage of positive CSF results (17.2%) in our systematic review is slightly higher compared to one other published systematic review looking into this subject by Morell et al. [161], with a positive CSF result in 14.9% of patients. The percentage of patients diagnosed by CSF in this systematic review was 3.1%, compared to 5.8% in our review. This systematic review included fewer studies (21 studies), excluding studies containing fewer than 20 patients.
In alignment with this systematic review, the review by Morell et al. also highlights the significant gap in the potential of CSF analysis but does not provide a possible explanation for it. To our knowledge, no study has explored the untapped diagnostic potential of CSF analysis. Several potential explanations can be offered: (i) The most significant reason is that brain biopsy with histological confirmation remains the clinical standard in most countries, with CSF examination typically reserved for detecting potential leptomeningeal involvement, following a final diagnosis based on biopsy, as outlined in the previously mentioned EANO and EHA-ESMO guidelines [11,12]. (ii) As a result of not using CSF examination as a diagnostic tool, some clinical centers either doubt its diagnostic value or do not utilize it. (iii) There is a potential delay in diagnosing PCNSL via CSF analysis, given its assumed low diagnostic yield [12]. (iv) Specific CSF tests, such as flow cytometry, may not be available. (v) A lumbar puncture may be omitted for clinical reasons, such as rapid deterioration of the clinical condition or the presence of space-occupying lesions that pose a risk of cerebral herniation. Results from our meta-analysis underscore the diagnostic potential of CSF analysis and the untapped value it holds. Strategies to overcome the practical and intellectual hurdles (mentioned above) for optimal use of CSF analysis are needed.
This systematic review shows increasing academic output on PCNSL diagnosis using CSF analysis techniques. Despite the introduction of flow cytometry around 1968, we did not find any increase in CSF-based diagnosis over time. In fact, the available studies show a minimal but significant decrease over time, which may be the result of the study types included over time. Also, the diagnostic yield of CSF analysis may decrease over time due to the increasing rate of neuroimaging: if the number of patients with an MRI-based suspicion of PCNSL and subsequent CSF investigation increases, while the number of patients with an ultimate diagnosis of PCNSL remains stable, then the diagnostic yield (detection rate) will decrease. In contrast to previous studies and reviews, flow cytometry did not significantly enhance the CSF-based diagnostic rate over time or result in a higher positive detection rate. Most of the previous studies looking into flow cytometry report on a small case series of unselected patients with hematological malignancies and only a small number of patients diagnosed with PCNSL.
Data regarding the use and yield of repeated lumbar punctures in the diagnosis of CSF is largely lacking, with only two articles stating this information [45,51]. On the one hand, Gupta et al. [45] reported 20 repeated lumbar punctures, of which only 1 (5%) showed a positive result. On the other hand, Bromberg et al. [9] provided data on repeated lumbar punctures in CNS hematologic malignancies, with 12 out of 60 patients (20%) showing a positive result after a first negative result. Since these patients are mainly diagnosed with systemic lymphoma (with screening of potential secondary CNS involvement), the added value of repeated lumbar punctures in the diagnosis of PCNSL remains unclear and cannot be endorsed or discouraged currently.
A major strength of this study is the rigorous search across multiple databases, analyzing over 5430 articles, with 144 papers eligible for the final review. We also provided a time-shift analysis and stated information regarding repeated CSF analysis.
This study has several limitations, both inherent to the meta-analysis and related to the interpretation of the results. The main limitation is that most studies included only patients with histologically confirmed PCNSL, possibly excluding those diagnosed by CSF alone, causing selection bias and underreporting of CSF-based diagnoses. Determining CSF involvement after the final diagnosis of PCNSL could lead to an overestimation of positive results (referral bias): a minimal atypical lymphoid cell in the CSF could be mistakenly interpreted as CSF involvement of PCNSL when considered in light of the final diagnosis. Another limitation is the lack of information on interobserver agreement and methodological heterogeneity in cytology and flow cytometry, leading to a high risk of bias [13]. For cytomorphology, in particular, distinguishing lymphoma cells from other pathological cells and/or normal leukocytes can be challenging, making interobserver variability likely.
Balmaceda et al. [162] were one of the first to propose CSF investigation following suspicions of PCNSL in 1995. They managed to diagnose 14.5% of patients with PCNSL only through CSF analysis, bypassing the need for brain biopsy. Balmaceda et al. even claim that this could be an underestimation, since a percentage of patients were treated with corticosteroids. In our study, we did not investigate the influence of corticosteroids prior to diagnosis on CSF analysis. This difference in diagnostic value of CSF analysis between our meta-analysis and the study of Balmaceda et al. illustrates that the diagnostic potential of CSF analysis may be increased by systematic application of CSF studies in clinical practice (as was performed by Balmaceda et al.). Despite the results of Balmaceda et al., nearly three decades later, we see a lack of systematic application of CSF analysis as a primary technique for PCNSL diagnosis.
Current international guidelines recommend CSF analysis only when a biopsy is not possible or to detect leptomeningeal involvement. CSF analysis has not yet been standardized as a diagnostic modality. Biopsy remains the clinical standard despite its risks and costs. Consequently, a more systematic use of CSF studies may provide patients with a low-risk, minimally invasive, and rapid diagnostic alternative. This is only feasible if clinical guidelines recognize the possibility of basing PCNSL diagnosis solely on CSF results. A potential limitation of CSF analysis is its inability to provide a definitive histological diagnosis or to classify lymphoma subtypes. Contrary to the EANO and EHA-ESMO recommendations, we believe that in a clinical setting, when a space-occupying lesion is identified with radiological suspicion of PCNSL, CSF analysis using cytology and flow cytometry can suffice—if positive—for diagnosing PCNSL. Moreover, CSF analysis should be considered for every patient suspected of having PCNSL, not only in cases where a biopsy is contraindicated, poses a high risk, or the patient is too weak to undergo the procedure. The currently demonstrated potential yield of CSF analysis for PCNSL, with a pooled detection rate of 18%, should be a key consideration for clinicians who still assume its diagnostic value is low. Recent research has identified novel biomarkers in CSF (microRNA, cell-free DNA, chemokines, cytokines) that may improve the diagnostic value of CSF in the upcoming years [14,163]. In particular, the use of MYD88-cfDNA seems promising, as this marker represents a lymphoma-specific mutation, which may carry a low prior risk of non-specific or false-positive findings. An overview of the advantages and disadvantages of these new techniques, alongside cytology and flow cytometry, is provided in Table 2. Preliminary findings of its diagnostic value are promising, but validation in prospective, adequately designed studies is needed [163].
5. Conclusions
In this systematic review of the current value of CSF analysis for the diagnosis of PCNSL in clinical practice, the most important finding is the gap between the overall detection rate of positive CSF outcomes and the proportion of diagnoses made using positive results. This shows that CSF analysis, a minimally invasive method to diagnose PCNSL, is underutilized in clinical practice. The findings of this systematic review should be interpreted with caution, as a significant number of the included studies exhibited a high risk of bias.
Recent research identified new biomarkers in CSF that could significantly improve its diagnostic utility by enhancing the sensitivity and specificity of CSF analysis for the diagnosis of PCNSL. Further research is encouraged to investigate the unexploited potential of current and new methods of CSF analysis in PCNSL. This may benefit patients through a more rapid diagnosis, with low procedure-related risks, resulting in the timely initiation of appropriate and potentially life-saving treatment.
Conceptualization: J.v.R., T.S. (Tom Snijders), T.S. (Tatjana Seute), M.M. and P.W.; methodology: J.v.R., T.S. (Tom Snijders) and P.W.; software: J.v.R., T.S. (Tom Snijders), P.B. and P.W.; validation: J.v.R., T.S. (Tom Snijders), P.B., T.S. (Tatjana Seute), M.M. and P.W.; formal analysis: J.v.R., T.S. (Tom Snijders), P.B. and P.W.; investigation: J.v.R., T.S. (Tom Snijders), P.B. and P.W.; resources: J.v.R., T.S. (Tom Snijders), P.B., T.S. (Tatjana Seute), M.M. and P.W.; data curation: J.v.R., T.S. (Tom Snijders), P.B., T.S. (Tatjana Seute), M.M. and P.W.; writing—original draft preparation: J.v.R., T.S. (Tom Snijders), P.B., T.S. (Tatjana Seute), M.M. and P.W.; writing—review and editing: J.v.R., T.S. (Tom Snijders), P.B., T.S. (Tatjana Seute), M.M. and P.W.; visualization: J.v.R., T.S. (Tom Snijders) and P.W.; supervision: T.S. (Tom Snijders), T.S. (Tatjana Seute), M.M. and P.W.; project administration: J.v.R., T.S. (Tom Snijders) and P.W.; funding acquisition: T.S. (Tom Snijders) and P.W. All authors have read and agreed to the published version of the manuscript.
All data, as extracted from the original reports, can be found in the published tables and text.
The authors extend their gratitude to the Stichting Annie van Koeverden for funding this study. We would also like to express our thanks to N. van der Werf at St. Antonius Hospital, for her valuable contribution in developing the search strategy.
The authors declare no conflicts of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 1 Flowchart illustrating study selection based on the PRISMA model.
Figure 2 Forest plot of the proportion of diagnoses based on CSF analysis [
Most commonly used diagnostic techniques in CSF for PCNSL: advantages and disadvantages.
Technique | Advantages | Disadvantages |
---|---|---|
Cytology/flow cytometry | Widely available | Limited sensitivity (17 to 20% detection rate) |
Assumed high specificity [ | ||
Enables basic immunophenotype classification | ||
Cell-free DNA analysis (MYD88-cfDNA) | Relatively high sensitivity (52 to 92%) [ | Limited clinical validation |
High specificity (99%) [ | Requires specialized equipment | |
Chemokines/cytokines (IL10/CXCL13) | High sensitivity (64 to 97%) [ | Limited clinical validation |
Low precision can cause false positives, e.g., in neuroborreliosis [ | ||
Cannot classify immunophenotype |
Supplementary Materials
The following supporting information can be downloaded at
1. Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012. Neuro Oncol.; 2015; 17, (Suppl. 4), pp. iv1-iv62. [DOI: https://dx.doi.org/10.1093/neuonc/nov189] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26511214]
2. Ferreri, A.J.M.; Calimeri, T.; Cwynarski, K.; Dietrich, J.; Grommes, C.; Hoang-Xuan, K.; Hu, L.S.; Illerhaus, G.; Nayak, L.; Ponzoni, M.
3. Riche, M.; Marijon, P.; Amelot, A.; Bielle, F.; Mokhtari, K.; Chambrun, M.P.; Joncour, A.L.; Idbaih, A.; Touat, M.; Do, C.H.
4. Kesserwan, M.A.; Shakil, H.; Lannon, M.; McGinn, R.; Banfield, L.; Nath, S.; Alotaibi, M.; Kasper, E.; Sharma, S. Frame-based versus frameless stereotactic brain biopsies: A systematic review and meta-analysis. Surg. Neurol. Int.; 2021; 12, 52. [DOI: https://dx.doi.org/10.25259/SNI_824_2020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33654555]
5. Velasco, R.; Mercadal, S.; Vidal, N.; Alañá, M.; Barceló, M.I.; Ibáñez-Juliá, M.J.; Bobillo, S.; Caldú Agud, R.; García Molina, E.; Martínez, P.
6. Han, C.H.; Batchelor, T.T. Diagnosis and management of primary central nervous system lymphoma. Cancer; 2017; 123, pp. 4314-4324. [DOI: https://dx.doi.org/10.1002/cncr.30965] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28950405]
7. Gray, H. History of lumbar puncture. Arch. Neurol. Psychiatry; 1921; 6, pp. 61-70. [DOI: https://dx.doi.org/10.1001/archneurpsyc.1921.02190010068004]
8. French, C.A.; Dorfman, D.M.; Shaheen, G.; Cibas, E.S. Diagnosing lymphoproliferative disorders involving the cerebrospinal fluid: Increased sensitivity using flow cytometric analysis. Diagn. Cytopathol.; 2000; 23, pp. 369-374. [DOI: https://dx.doi.org/10.1002/1097-0339(200012)23:6<369::AID-DC1>3.0.CO;2-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11074639]
9. Bromberg, J.E.; Breems, D.A.; Kraan, J.; Bikker, G.; van der Holt, B.; Smitt, P.S.; van den Bent, M.J.; van’t Veer, M.; Gratama, J.W. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology; 2007; 68, pp. 1674-1679. [DOI: https://dx.doi.org/10.1212/01.wnl.0000261909.28915.83] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17502548]
10. Schroers, R.; Baraniskin, A.; Heute, C.; Vorgerd, M.; Brunn, A.; Kuhnhenn, J.; Kowoll, A.; Alekseyev, A.; Schmiegel, W.; Schlegel, U.
11. Hoang-Xuan, K.; Deckert, M.; Ferreri, A.J.M.; Furtner, J.; Gallego Perez-Larraya, J.; Henriksson, R.; Hottinger, A.F.; Kasenda, B.; Lefranc, F.; Lossos, A.
12. Ferreri, A.J.M.; Illerhaus, G.; Doorduijn, J.K.; Auer, D.P.; Bromberg, J.E.C.; Calimeri, T.; Cwynarski, K.; Fox, C.P.; Hoang-Xuan, K.; Malaise, D.
13. Canovi, S.; Campioli, D. Accuracy of flow cytometry and cytomorphology for the diagnosis of meningeal involvement in lymphoid neoplasms: A systematic review. Diagn. Cytopathol.; 2016; 44, pp. 841-856. [DOI: https://dx.doi.org/10.1002/dc.23539] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27458077]
14. Van Westrhenen, A.; Smidt, L.C.A.; Seute, T.; Nierkens, S.; Stork, A.C.J.; Minnema, M.C.; Snijders, T.J. Diagnostic markers for CNS lymphoma in blood and cerebrospinal fluid: A systematic review. Br. J. Haematol.; 2018; 182, pp. 384-403. [DOI: https://dx.doi.org/10.1111/bjh.15410] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29808930]
15. Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015, Elaboration and explanation. BMJ; 2015; 350, g7647. [DOI: https://dx.doi.org/10.1136/bmj.g7647] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25555855]
16. Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2 Group. QUADAS-2, a revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med.; 2011; 155, pp. 529-536. [DOI: https://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22007046]
17. DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials; 1986; 7, pp. 177-188. [DOI: https://dx.doi.org/10.1016/0197-2456(86)90046-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3802833]
18. Houillier, C.; Soussain, C.; Ghesquières, H.; Soubeyran, P.; Chinot, O.; Taillandier, L.; Lamy, T.; Choquet, S.; Ahle, G.; Damaj, G.
19. Feldheim, J.; Darkwah Oppong, M.; Feldheim, J.A.; Jabbarli, R.; Dammann, P.; Uerschels, A.K.; Gembruch, O.; Ahmadipour, Y.; Deuschl, C.; Junker, A.
20. Tatarczuch, M.; Lewis, K.L.; Gunjur, A.; Shaw, B.; Poon, L.M.; Paul, E.; Ku, M.; Wong, M.; Ai, S.; Beekman, A.
21. Yi, J.H.; Kim, S.J.; Yang, D.H.; Do, Y.R.; Won, J.H.; Baek, D.; Shin, H.J.; Kim, D.S.; Kim, H.J.; Kang, K.W.
22. Janopaul-Naylor, J.R.; Patel, J.S.; Rupji, M.; Qian, D.C.; Hoang, K.B.; McCall, N.S.; Schlafstein, A.J.; Shoaf, M.L.; Kothari, S.; Olson, J.J.
23. Batchelor, T.T.; Giri, S.; Ruppert, A.S.; Geyer, S.M.; Smith, S.E.; Mohile, N.; Swinnen, L.J.; Friedberg, J.W.; Kahl, B.S.; Bartlett, N.L.
24. Zhang, Y.; Wang, W.; Zhao, D.; Chong, W.; Chen, C.; Zhang, W.; Zhou, D. The role of upfront lenalidomide maintenance for primary central nervous system lymphoma following first-line methotrexate treatment: A retrospective study. Cancer Med.; 2024; 9, e7193. [DOI: https://dx.doi.org/10.1002/cam4.7193] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38738459]
25. Schorb, E.; Isbell, L.K.; Kerkhoff, A.; Mathas, S.; Braulke, F.; Egerer, G.; Röth, A.; Schliffke, S.; Borchmann, P.; Brunnberg, U.
26. Chuang, C.H.; Kuo, M.C.; Chang, H.; Wu, J.H.; Hung, Y.S.; Ou, C.W.; Lin, T.L.; Su, Y.J.; Ong, Y.C.; Shih, L.Y.
27. Bairey, O.; Lebel, E.; Buxbaum, C.; Porges, T.; Taliansky, A.; Gurion, R.; Goldschmidt, N.; Shina, T.T.; Zektser, M.; Hofstetter, L.
28. Ma, J.; Chen, K.; Ding, Y.; Li, X.; Tang, Q.; Jin, B.; Luo, R.Y.; Thyparambil, S.; Han, Z.; Chou, C.J.
29. Rozenblum, L.; Galanaud, D.; Houillier, C.; Soussain, C.; Baptiste, A.; Belin, L.; Edeline, V.; Naggara, P.; Soret, M.; Causse-Lemercier, V.
30. Zhong, K.; Shi, Y.; Gao, Y.; Zhang, H.; Zhang, M.; Zhang, Q.; Cen, X.; Xue, M.; Qin, Y.; Zhao, Y.
31. Li, J.; Tang, X.; Luo, X.; Liu, L.; Li, D.; Yang, L. Clinicopathological analysis and specific discriminating markers of interleukin detection in cerebrospinal fluid with primary central nervous system lymphoma: Results from a retrospective study. Ann. Hematol.; 2023; 102, pp. 2153-2163. [DOI: https://dx.doi.org/10.1007/s00277-023-05301-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37289220]
32. Lin, Z.; Ma, J.; Ma, Y.; Li, Q.; Kang, H.; Zhang, M.; Chen, B.; Xia, R. Prognostic impact of peripheral natural killer cells in primary central nervous system lymphoma. Front. Immunol.; 2023; 14, 1191033. [DOI: https://dx.doi.org/10.3389/fimmu.2023.1191033] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37426647]
33. Bazer, D.A.; Zabrocka, E.; Koroneos, N.; Kowalska, A. Central Nervous System Lymphoma: The Great Mimicker-A Single-Institution Retrospective Study. Case Rep. Oncol. Med.; 2023; 2023, 8815502. [DOI: https://dx.doi.org/10.1155/2023/8815502] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37228706]
34. Ebrahimi, H.; Esfandbod, M.; Ketabchi, S.M.; Yarandi, K.K.; Shirani, M.; Amirjamshidi, A.; Alimohamadi, M. Prognostic Factors of the Primary Central Nervous System Lymphoma: Clinical Experience from a Tertiary Care Center in the Middle East. Asian J. Neurosurg.; 2023; 18, pp. 36-39. [DOI: https://dx.doi.org/10.1055/s-0043-1761229] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37056898]
35. Wang, W.; Zou, D.; Zhuang, Z.; Zhang, X.; Zhang, L.; Yin, J.; Jia, C.; Yuan, L.; Cai, H.; Zhang, Y.
36. Das, S.; Bagal, B.; Jain, H.; Kashyap, L.; Anbarasan, S.; Abhishek, S.; Bondili, S.; Nayak, L.; Thorat, J.; Mirgh, S.
37. de Pádua Covas Lage, L.A.; Araújo Soares, V.; Meneguin, T.D.; Culler, H.F.; Reichert, C.O.; Jacomassi, M.D.; Reis, D.G.C.; Zerbini, M.C.N.; de Oliveira Costa, R.; Rocha, V.
38. Ferreri, A.J.M.; Cwynarski, K.; Pulczynski, E.; Fox, C.P.; Schorb, E.; Celico, C.; Falautano, M.; Nonis, A.; La Rosée, P.; Binder, M.
39. Vs, R.; Podder, D.; Mukherjee, H.; Mandal, P.; Achari, R.; Sen, S.; Dey, D.; Arun, I.; Latif, Z.; Arora, N.
40. Yoon, S.E.; Jo, H.; Kang, E.S.; Cho, D.; Cho, J.; Kim, W.S.; Kim, S.J. Role of upfront autologous stem cell transplantation in patients newly diagnosed with primary CNS lymphoma treated with R-MVP: Real-world data from a retrospective single-center analysis. Bone Marrow Transplant.; 2022; 57, pp. 641-648. [DOI: https://dx.doi.org/10.1038/s41409-022-01605-w] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35173287]
41. Luo, X.; Zhu, Y.; Zhang, Y.; Zhang, Q.; Wang, X.; Deng, X. Parameters of MR perfusion-weighted imaging predict the response and prognosis to high-dose methotrexate-based chemotherapy in immunocompetent patients with primary central nervous system lymphoma. J. Clin. Neurosci.; 2022; 95, pp. 151-158. [DOI: https://dx.doi.org/10.1016/j.jocn.2021.12.012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34929639]
42. Sun, X.; Wang, C.; Chen, C.; Huang, J.; Wu, X.; Wang, Y.; He, X.; Cao, J.; Jiang, W.; Sun, P.
43. Lee, J.Y.; Paik, J.H.; Suh, K.J.; Kim, J.W.; Kim, S.H.; Kim, J.W.; Kim, Y.J.; Lee, K.W.; Kim, J.H.; Bang, S.M.
44. Yamagishi, Y.; Sasaki, N.; Nakano, Y.; Matushita, Y.; Omura, T.; Shimizu, S.; Saito, K.; Kobayashi, K.; Narita, Y.; Kondo, A.
45. Gupta, M.; Burns, E.J.; Georgantas, N.Z.; Thierauf, J.; Nayyar, N.; Gordon, A.; Jones, S.S.; Pisapia, M.; Sun, Y.; Burns, R.P.
46. Ferreri, A.J.M.; Calimeri, T.; Lopedote, P.; Francaviglia, I.; Daverio, R.; Iacona, C.; Belloni, C.; Steffanoni, S.; Gulino, A.; Anghileri, E.
47. Seidel, S.; Kowalski, T.; Margold, M.; Baraniskin, A.; Schroers, R.; Martus, P.; Schlegel, U. HDMTX-based polychemotherapy including intraventricular therapy in elderly patients with primary CNS lymphoma: A single center series. Ther. Adv. Neurol. Disord.; 2020; 13, 1756286420951087. [DOI: https://dx.doi.org/10.1177/1756286420951087] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33101460]
48. Shao, J.; Chen, K.; Li, Q.; Ma, J.; Ma, Y.; Lin, Z.; Kang, H.; Chen, B. High Level of IL-10 in Cerebrospinal Fluid is Specific for Diagnosis of Primary Central Nervous System Lymphoma. Cancer Manag. Res.; 2020; 12, pp. 6261-6268. [DOI: https://dx.doi.org/10.2147/CMAR.S255482] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32801871]
49. Sethi, T.K.; Kovach, A.E.; Grover, N.S.; Huang, L.C.; Lee, L.A.; Rubinstein, S.M.; Wang, Y.; Morgan, D.S.; Greer, J.P.; Park, S.I.
50. Lin, C.H.; Yang, C.F.; Yang, H.C.; Fay, L.Y.; Yeh, C.M.; Kuan, A.S.; Wang, H.Y.; Gau, J.P.; Hsiao, L.T.; Chiou, T.J.
51. Hiemcke-Jiwa, L.S.; Leguit, R.J.; Snijders, T.J.; Bromberg, J.E.C.; Nierkens, S.; Jiwa, N.M.; Minnema, M.C.; Huibers, M.M.H. MYD88 p. L265P detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma. Br. J. Haematol.; 2019; 185, pp. 974-977. [DOI: https://dx.doi.org/10.1111/bjh.15674] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30408153]
52. Rimelen, V.; Ahle, G.; Pencreach, E.; Zinniger, N.; Debliquis, A.; Zalmaï, L.; Harzallah, I.; Hurstel, R.; Alamome, I.; Lamy, F.
53. Mao, C.; Chen, F.; Li, Y.; Jiang, X.; Liu, S.; Guo, H.; Huang, L.; Wei, X.; Liang, Z.; Li, W.
54. Nayyar, N.; White, M.D.; Gill, C.M.; Lastrapes, M.; Bertalan, M.; Kaplan, A.; D’Andrea, M.R.; Bihun, I.; Kaneb, A.; Dietrich, J.
55. Patekar, M.; Adhikari, N.; Biswas, A.; Raina, V.; Kumar, L.; Mohanti, B.K.; Gogia, A.; Sharma, A.; Batra, A.; Bakhshi, S.
56. Bromberg, J.E.C.; Issa, S.; Bakunina, K.; Minnema, M.C.; Seute, T.; Durian, M.; Cull, G.; Schouten, H.C.; Stevens, W.B.C.; Zijlstra, J.M.
57. Mizutani, H.; Nakane, S.; Ikeda, T.; Nakamura, H.; Takamatsu, K.; Makino, K.; Tawara, N.; Mukaino, A.; Watari, M.; Matsui, H.
58. Zorofchian, S.; El-Achi, H.; Yan, Y.; Esquenazi, Y.; Ballester, L.Y. Characterization of genomic alterations in primary central nervous system lymphomas. J. Neurooncol.; 2018; 140, pp. 509-517. [DOI: https://dx.doi.org/10.1007/s11060-018-2990-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30171453]
59. Ikeguchi, R.; Shimizu, Y.; Shimizu, S.; Kitagawa, K. CSF and clinical data are useful in differentiating CNS inflammatory demyelinating disease from CNS lymphoma. Mult. Scler.; 2018; 24, pp. 1212-1223. [DOI: https://dx.doi.org/10.1177/1352458517717804] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28657431]
60. Hottenrott, T.; Schorb, E.; Fritsch, K.; Dersch, R.; Berger, B.; Huzly, D.; Rauer, S.; Tebartz van Elst, L.; Endres, D.; Stich, O. The MRZ reaction and a quantitative intrathecal IgG synthesis may be helpful to differentiate between primary central nervous system lymphoma and multiple sclerosis. J. Neurol.; 2018; 265, pp. 1106-1114. [DOI: https://dx.doi.org/10.1007/s00415-018-8779-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29511863]
61. Nam, S.J.; Kim, S.; Kwon, D.; Kim, H.; Kim, S.; Lee, E.; Kim, T.M.; Heo, D.S.; Park, S.H.; Lim, M.S.
62. Ahn, Y.; Ahn, H.J.; Yoon, D.H.; Hong, J.Y.; Yoo, C.; Kim, S.; Huh, J.; Suh, C. Primary central nervous system lymphoma: A new prognostic model for patients with diffuse large B-cell histology. Blood Res.; 2017; 52, pp. 285-292. [DOI: https://dx.doi.org/10.5045/br.2017.52.4.285] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29333405]
63. Park, J.S.; Lim, D.H.; Ahn, Y.C.; Park, W.; Kim, S.J.; Kim, W.S.; Kim, K. Whole brain radiation dose reduction for primary central nervous system lymphoma patients who achieved partial response after high-dose methotrexate based chemotherapy. Jpn. J. Clin. Oncol.; 2017; 47, pp. 995-1001. [DOI: https://dx.doi.org/10.1093/jjco/hyx120] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28973509]
64. Puligundla, C.K.; Bala, S.; Karnam, A.K.; Gundeti, S.; Paul, T.R.; Uppin, M.S.; Maddali, L.S. Clinicopathological Features and Outcomes in Primary Central Nervous System Lymphoma: A 10-year Experience. Indian J. Med. Paediatr. Oncol.; 2017; 38, pp. 478-482. [DOI: https://dx.doi.org/10.4103/ijmpo.ijmpo_202_16] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29333016]
65. Jung, J.; Lee, H.; Yun, T.; Lee, E.; Moon, H.; Joo, J.; Park, W.S.; Choi, M.; Lee, J.O.; Lee, J.S.
66. Fan, N.; Zhang, L.; Xu, X.; Chen, B.; Zhu, C.; Li, P.; Chen, Z.; Ding, T.; Ma, Y.; Yuan, Y.
67. Cerqua, R.; Balestrini, S.; Perozzi, C.; Cameriere, V.; Renzi, S.; Lagalla, G.; Mancini, G.; Montanari, M.; Leoni, P.; Scerrati, M.
68. Zhang, Y.; Zhang, Q.; Wang, X.X.; Deng, X.F.; Zhu, Y.Z. Value of pretherapeutic DWI in evaluating prognosis and therapeutic effect in immunocompetent patients with primary central nervous system lymphoma given high-dose methotrexate-based chemotherapy: ADC-based assessment. Clin. Radiol.; 2016; 71, pp. 1018-1029. [DOI: https://dx.doi.org/10.1016/j.crad.2016.05.017] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27341986]
69. Jang, J.E.; Kim, Y.R.; Kim, S.J.; Cho, H.; Chung, H.; Lee, J.Y.; Park, H.; Kim, Y.; Cheong, J.W.; Min, Y.H.
70. Liu, J.; Sun, X.F.; Qian, J.; Bai, X.Y.; Zhu, H.; Cui, Q.U.; Li, X.Y.; Chen, Y.D.; Wang, Y.M.; Liu, Y.B. Immunochemotherapy for primary central nervous system lymphoma with rituximab, methotrexate, cytarabine and dexamethasone: Retrospective analysis of 18 cases. Mol. Clin. Oncol.; 2015; 3, pp. 949-953. [DOI: https://dx.doi.org/10.3892/mco.2015.566] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26171213]
71. Omuro, A.; Chinot, O.; Taillandier, L.; Ghesquieres, H.; Soussain, C.; Delwail, V.; Lamy, T.; Gressin, R.; Choquet, S.; Soubeyran, P.
72. Pulczynski, E.J.; Kuittinen, O.; Erlanson, M.; Hagberg, H.; Fosså, A.; Eriksson, M.; Nordstrøm, M.; Østenstad, B.; Fluge, Ø.; Leppä, S.
73. Sasagawa, Y.; Akai, T.; Tachibana, O.; Iizuka, H. Diagnostic value of interleukin-10 in cerebrospinal fluid for diffuse large B-cell lymphoma of the central nervous system. J. Neurooncol.; 2015; 121, pp. 177-183. [DOI: https://dx.doi.org/10.1007/s11060-014-1622-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25258254]
74. Liu, L.; Cao, F.; Wang, S.; Zhou, J.; Yang, G.; Wang, C. Detection of malignant B lymphocytes by PCR clonality assay using direct lysis of cerebrospinal fluid and low volume specimens. Int. J. Lab. Hematol.; 2015; 37, pp. 165-173. [DOI: https://dx.doi.org/10.1111/ijlh.12255] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24815498]
75. Olivier, G.; Clavert, A.; Lacotte-Thierry, L.; Gardembas, M.; Escoffre-Barbe, M.; Brion, A.; Cumin, I.; Legouffe, E.; Solal-Celigny, P.; Chabin, M.
76. Ferreri, A.J.; Ciceri, F.; Brandes, A.A.; Montanari, M.; Balzarotti, M.; Spina, M.; Ilariucci, F.; Zaja, F.; Stelitano, C.; Bobbio, F.
77. Tao, W.; Wang, Z.; Wu, L. Clinical analysis of primary central nervous system lymphoma with non-immune deficiency in 17 patients. Chin.-Ger. J. Clin. Oncol.; 2013; 12, pp. 40-42. [DOI: https://dx.doi.org/10.1007/s10330-012-1052-3]
78. He, M.; Zuo, C.; Wang, J.; Liu, J.; Jiao, B.; Zheng, J.; Cai, Z. Prognostic significance of the aggregative perivascular growth pattern of tumor cells in primary central nervous system diffuse large B-cell lymphoma. Neuro Oncol.; 2013; 15, pp. 727-734. [DOI: https://dx.doi.org/10.1093/neuonc/not012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23482670]
79. Salamoon, M.; Hussein, T.; Kenj, M.; Bachour, M. High-dose methotrexate, high-dose cytarabine and temozolomide for the treatment of primary central nervous system lymphoma (PCNSL). Med. Oncol.; 2013; 30, 690. [DOI: https://dx.doi.org/10.1007/s12032-013-0690-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23959450]
80. Rubenstein, J.L.; Wong, V.S.; Kadoch, C.; Gao, H.X.; Barajas, R.; Chen, L.; Josephson, S.A.; Scott, B.; Douglas, V.; Maiti, M.
81. Korfel, A.; Weller, M.; Martus, P.; Roth, P.; Klasen, H.A.; Roeth, A.; Rauch, M.; Hertenstein, B.; Fischer, T.; Hundsberger, T.
82. Sasayama, T.; Nakamizo, S.; Nishihara, M.; Kawamura, A.; Tanaka, H.; Mizukawa, K.; Miyake, S.; Taniguchi, M.; Hosoda, K.; Kohmura, E. Cerebrospinal fluid interleukin-10 is a potentially useful biomarker in immunocompetent primary central nervous system lymphoma (PCNSL). Neuro Oncol.; 2012; 14, pp. 368-380. [DOI: https://dx.doi.org/10.1093/neuonc/nor203] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22156547]
83. Wieduwilt, M.J.; Valles, F.; Issa, S.; Behler, C.M.; Hwang, J.; McDermott, M.; Treseler, P.; O’Brien, J.; Shuman, M.A.; Cha, S.
84. Gerard, L.M.; Imrie, K.R.; Mangel, J.; Buckstein, R.; Doherty, M.; Mackenzie, R.; Cheung, M.C. High-dose methotrexate based chemotherapy with deferred radiation for treatment of newly diagnosed primary central nervous system lymphoma. Leuk. Lymphoma; 2011; 52, pp. 1882-1890. [DOI: https://dx.doi.org/10.3109/10428194.2011.584004] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21663504]
85. Laack, N.N.; O’Neill, B.P.; Ballman, K.V.; O’Fallon, J.R.; Carrero, X.W.; Kurtin, P.J.; Scheithauer, B.W.; Brown, P.D.; Habermann, T.M.; Colgan, J.P.
86. Omuro, A.; Taillandier, L.; Chinot, O.; Sierra Del Rio, M.; Carnin, C.; Barrie, M.; Soussain, C.; Tanguy, M.L.; Choquet, S.; Leblond, V.
87. Pasricha, S.; Gupta, A.; Gawande, J.; Trivedi, P.; Patel, D. Primary central nervous system lymphoma: A study of clinicopathological features and trend in western India. Indian J. Cancer; 2011; 48, pp. 199-203. [DOI: https://dx.doi.org/10.4103/0019-509X.82890] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21768666]
88. Ferreri, A.J.; Licata, G.; Foppoli, M.; Corazzelli, G.; Zucca, E.; Stelitano, C.; Zaja, F.; Fava, S.; Paolini, R.; Franzin, A.
89. Pels, H.; Juergens, A.; Schirgens, I.; Glasmacher, A.; Schulz, H.; Engert, A.; Schackert, G.; Reichmann, H.; Kroschinsky, F.; Vogt-Schaden, M.
90. Hohaus, S.; Teofili, L.; Balducci, M.; Manfrida, S.; Pompucci, A.; D’Alo’, F.; Massini, G.; Larocca, L.M.; Marra, R.; Storti, S. Combined Modality Treatment Including Methotrexate-Based Chemotherapy For Primary CENTRAL Nervous System Lymphoma: A Single Institution Experience. Mediterr. J. Hematol. Infect. Dis.; 2009; 1, e2009020. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21416006]
91. Agarwal, P.A.; Menon, S.; Smruti, B.K.; Singhal, B.S. Primary central nervous system lymphoma: A profile of 26 cases from Western India. Neurol. India; 2009; 57, pp. 756-763. [DOI: https://dx.doi.org/10.4103/0028-3886.59472] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20139505]
92. Ferreri, A.J.; Reni, M.; Foppoli, M.; Martelli, M.; Pangalis, G.A.; Frezzato, M.; Cabras, M.G.; Fabbri, A.; Corazzelli, G.; Ilariucci, F.
93. Angelov, L.; Doolittle, N.D.; Kraemer, D.F.; Siegal, T.; Barnett, G.H.; Peereboom, D.M.; Stevens, G.; McGregor, J.; Jahnke, K.; Lacy, C.A.
94. Illerhaus, G.; Marks, R.; Müller, F.; Ihorst, G.; Feuerhake, F.; Deckert, M.; Ostertag, C.; Finke, J. High-dose methotrexate combined with procarbazine and CCNU for primary CNS lymphoma in the elderly: Results of a prospective pilot and phase II study. Ann. Oncol.; 2009; 20, pp. 319-325. [DOI: https://dx.doi.org/10.1093/annonc/mdn628] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18953065]
95. Kiewe, P.; Fischer, L.; Martus, P.; Thiel, E.; Korfel, A. Primary central nervous system lymphoma: Monocenter, long-term, intent-to-treat analysis. Cancer; 2008; 112, pp. 1812-1820. [DOI: https://dx.doi.org/10.1002/cncr.23377] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18318432]
96. Haldorsen, I.S.; Krossnes, B.K.; Aarseth, J.H.; Scheie, D.; Johannesen, T.B.; Mella, O.; Espeland, A. Increasing incidence and continued dismal outcome of primary central nervous system lymphoma in Norway 1989–2003: Time trends in a 15-year national survey. Cancer; 2007; 110, pp. 1803-1814. [DOI: https://dx.doi.org/10.1002/cncr.22989] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17721992]
97. Yamanaka, R.; Homma, J.; Sano, M.; Tsuchiya, N.; Yajima, N.; Shinbo, Y.; Hasegawa, A.; Onda, K.; Tanaka, R. Immuno-chemotherapy with a combination of rituximab, methotrexate, pirarubicin and procarbazine for patients with primary CNS lymphoma--a preliminary report. Leuk. Lymphoma; 2007; 48, pp. 1019-1022. [DOI: https://dx.doi.org/10.1080/10428190701248009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17487746]
98. Silvani, A.; Salmaggi, A.; Eoli, M.; Lamperti, E.; Broggi, G.; Marras, C.E.; Fariselli, L.; Milanesi, I.; Fiumani, A.; Gaviani, P.
99. Quek, R.; Ty, A.; Lim, S.T.; See, S.J.; Wong, M.C.; Yap, S.P.; Sng, I.; Hee, S.W.; Tao, M. Primary central nervous system lymphoma in an Asian population: A 15-year experience. Onkologie; 2006; 29, pp. 455-459. (In English) [DOI: https://dx.doi.org/10.1159/000095342] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17028454]
100. Kawamura, T.; Ishiguchi, T.; Shibamoto, Y.; Ogino, H.; Ishihara, S.; Yamada, T.; Katada, K.; Suzuki, K.; Suzuki, H.; Mimura, M. Results of primary central nervous system lymphoma treated by radiation and chemotherapy: Retrospective analysis of twelve institutions in the Tokai District of Japan, 1995–1999. Radiat. Med.; 2006; 24, pp. 9-16. [DOI: https://dx.doi.org/10.1007/BF02489983] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16715656]
101. Omuro, A.M.; Ben-Porat, L.S.; Panageas, K.S.; Kim, A.K.; Correa, D.D.; Yahalom, J.; Deangelis, L.M.; Abrey, L.E. Delayed neurotoxicity in primary central nervous system lymphoma. Arch. Neurol.; 2005; 62, pp. 1595-1600. [DOI: https://dx.doi.org/10.1001/archneur.62.10.1595] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16216945]
102. Brevet, M.; Garidi, R.; Gruson, B.; Royer, B.; Vaida, I.; Damaj, G. First-line autologous stem cell transplantation in primary CNS lymphoma. Eur. J. Haematol.; 2005; 75, pp. 288-292. [DOI: https://dx.doi.org/10.1111/j.1600-0609.2005.00508.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16146534]
103. Yamanaka, R.; Morii, K.; Shinbo, Y.; Takeuchi, S.; Tamura, T.; Hondoh, H.; Takahashi, H.; Onda, K.; Takahashi, H.; Tanaka, R. Modified ProMACE-MOPP hybrid regimen with moderate-dose methotrexate for patients with primary CNS lymphoma. Ann. Hematol.; 2005; 84, pp. 447-455. [DOI: https://dx.doi.org/10.1007/s00277-005-1005-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15747120]
104. Hodson, D.J.; Bowles, K.M.; Cooke, L.J.; Kläger, S.L.; Powell, G.A.; Laing, R.J.; Grant, J.W.; Williams, M.V.; Burnet, N.G.; Marcus, R.E. Primary central nervous system lymphoma: A single-centre experience of 55 unselected cases. Clin. Oncol.; 2005; 17, pp. 185-191. [DOI: https://dx.doi.org/10.1016/j.clon.2004.10.007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15901003]
105. Korfel, A.; Martus, P.; Nowrousian, M.R.; Hossfeld, D.K.; Kirchen, H.; Brücher, J.; Stelljes, M.; Birkmann, J.; Peschel, C.; Pasold, R.
106. Dubuisson, A.; Kaschten, B.; Lénelle, J.; Martin, D.; Robe, P.; Fassotte, M.F.; Rutten, I.; Deprez, M.; Stevenaert, A. Primary central nervous system lymphoma report of 32 cases and review of the literature. Clin. Neurol. Neurosurg.; 2004; 107, pp. 55-63. [DOI: https://dx.doi.org/10.1016/j.clineuro.2004.03.005] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15567554]
107. Bessell, E.M.; Graus, F.; Lopez-Guillermo, A.; Lewis, S.A.; Villa, S.; Verger, E.; Petit, J. Primary non-Hodgkin’s lymphoma of the CNS treated with CHOD/BVAM or BVAM chemotherapy before radiotherapy: Long-term survival and prognostic factors. Int. J. Radiat. Oncol. Biol. Phys.; 2004; 59, pp. 501-508. [DOI: https://dx.doi.org/10.1016/j.ijrobp.2003.11.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15145169]
108. Caroli, E.; Acqui, M.; Ferrante, L. Primary cerebral lymphoma: A retrospective study in 22 immunocompetent patients. Tumori; 2004; 90, pp. 294-298. [DOI: https://dx.doi.org/10.1177/030089160409000306] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15315308]
109. Poortmans, P.M.; Kluin-Nelemans, H.C.; Haaxma-Reiche, H.; Van’t Veer, M.; Hansen, M.; Soubeyran, P.; Taphoorn, M.; Thomas, J.; Van den Bent, M.; Fickers, M.
110. Abrey, L.E.; Moskowitz, C.H.; Mason, W.P.; Crump, M.; Stewart, D.; Forsyth, P.; Paleologos, N.; Correa, D.D.; Anderson, N.D.; Caron, D.
111. Ishikawa, H.; Hasegawa, M.; Tamaki, Y.; Hayakawa, K.; Akimoto, T.; Sakurai, H.; Mitsuhashi, N.; Niibe, H.; Tamura, M.; Nakano, T. Comparable outcomes of radiation therapy without high-dose methotrexate for patients with primary central nervous system lymphoma. Jpn. J. Clin. Oncol.; 2003; 33, pp. 443-449. [DOI: https://dx.doi.org/10.1093/jjco/hyg087] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14594937]
112. Dabaja, B.S.; McLaughlin, P.; Ha, C.S.; Pro, B.; Meyers, C.A.; Seabrooke, L.F.; Wilder, R.B.; Kyritsis, A.P.; Preti, H.A.; Yung, W.K.
113. Choi, J.S.; Nam, D.H.; Ko, Y.H.; Seo, J.W.; Choi, Y.L.; Suh, Y.L.; Ree, H.J. Primary central nervous system lymphoma in Korea: Comparison of B- and T-cell lymphomas. Am. J. Surg. Pathol.; 2003; 27, pp. 919-928. [DOI: https://dx.doi.org/10.1097/00000478-200307000-00007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12826884]
114. Cheng, T.; Forsyth, P.; Chaudhry, A.; Morris, D.; Glück, S.; Russell, J.A.; Stewart, D.A. High-dose thiotepa, busulfan, cyclophosphamide and ASCT without whole-brain radiotherapy for poor prognosis primary CNS lymphoma. Bone Marrow Transplant.; 2003; 31, pp. 679-685. [DOI: https://dx.doi.org/10.1038/sj.bmt.1703917] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12692608]
115. Batchelor, T.; Carson, K.; O’Neill, A.; Grossman, S.A.; Alavi, J.; New, P.; Hochberg, F.; Priet, R. Treatment of primary CNS lymphoma with methotrexate and deferred radiotherapy: A report of NABTT 96-07. J. Clin Oncol.; 2003; 21, pp. 1044-1049. [DOI: https://dx.doi.org/10.1200/JCO.2003.03.036] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12637469]
116. Braaten, K.M.; Betensky, R.A.; de Leval, L.; Okada, Y.; Hochberg, F.H.; Louis, D.N.; Harris, N.L.; Batchelor, T.T. BCL-6 expression predicts improved survival in patients with primary central nervous system lymphoma. Clin. Cancer Res.; 2003; 9, pp. 1063-1069. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12631608]
117. Ferreri, A.J.; Blay, J.Y.; Reni, M.; Pasini, F.; Spina, M.; Ambrosetti, A.; Calderoni, A.; Rossi, A.; Vavassori, V.; Conconi, A.
118. DeAngelis, L.M.; Seiferheld, W.; Schold, S.C.; Fisher, B.; Schultz, C.J. Radiation Therapy Oncology Group Study 93-10. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. J. Clin. Oncol.; 2002; 20, pp. 4643-4648. [DOI: https://dx.doi.org/10.1200/JCO.2002.11.013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12488408]
119. Depil, S.; Coiteux, V.; Guillerm, G.; Gyan, E.; Bauters, F.; Fenaux, P.; Quesnel, B. Primary central nervous system lymphoma in immunocompetent adults: Poor results mainly associated with high treatment related toxicities. Leuk. Lymphoma; 2002; 43, pp. 1819-1822. [DOI: https://dx.doi.org/10.1080/1042819021000006420] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12685838]
120. Calderoni, A.; Aebi, S. Combination chemotherapy with high-dose methotrexate and cytarabine with or without brain irradiation for primary central nervous system lymphomas. J. Neurooncol.; 2002; 59, pp. 227-230. [DOI: https://dx.doi.org/10.1023/A:1019993018162] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12241119]
121. Shibata, T.; Suzumiya, J.; Tomonaga, M.; Kikuchi, M.; Shibuya, T.; Tukada, J.; Tamura, K. Primary central nervous system lymphoma: The clinical features and treatment of 22 cases. Intern. Med.; 2002; 41, pp. 283-289. [DOI: https://dx.doi.org/10.2169/internalmedicine.41.283] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11993788]
122. Goldkuhl, C.; Ekman, T.; Wiklund, T.; Telhaug, R. Nordic Lymphoma Group. Age-adjusted chemotherapy for primary central-nervous system lymphoma–a pilot study. Acta Oncol.; 2002; 41, pp. 29-35. [DOI: https://dx.doi.org/10.1080/028418602317314037] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11990514]
123. Gleissner, B.; Siehl, J.; Korfel, A.; Reinhardt, R.; Thiel, E. CSF evaluation in primary CNS lymphoma patients by PCR of the CDR III IgH genes. Neurology; 2002; 58, pp. 390-396. [DOI: https://dx.doi.org/10.1212/WNL.58.3.390] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11839837]
124. Herrlinger, U.; Schabet, M.; Brugger, W.; Kortmann, R.D.; Kanz, L.; Bamberg, M.; Dichgans, J.; Weller, M. Primary central nervous system lymphoma 1991–1997, outcome and late adverse effects after combined modality treatment. Cancer; 2001; 91, pp. 130-135. [DOI: https://dx.doi.org/10.1002/1097-0142(20010101)91:1<130::AID-CNCR17>3.0.CO;2-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11148569]
125. Mead, G.M.; Bleehen, N.M.; Gregor, A.; Bullimore, J.; Shirley, D.; Rampling, R.P.; Trevor, J.; Glaser, M.G.; Lantos, P.; Ironside, J.W.
126. Zylber-Katz, E.; Gomori, J.M.; Schwartz, A.; Lossos, A.; Bokstein, F.; Siegal, T. Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma. Clin. Pharmacol. Ther.; 2000; 67, pp. 631-641. [DOI: https://dx.doi.org/10.1067/mcp.2000.106932] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10872645]
127. O’Brien, P.; Roos, D.; Pratt, G.; Liew, K.; Barton, M.; Poulsen, M.; Olver, I.; Trotter, G. Phase II multicenter study of brief single-agent methotrexate followed by irradiation in primary CNS lymphoma. J. Clin. Oncol.; 2000; 18, pp. 519-526. [DOI: https://dx.doi.org/10.1200/JCO.2000.18.3.519] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10653867]
128. Ng, S.; Rosenthal, M.A.; Ashley, D.; Cher, L. High-dose methotrexate for primary CNS lymphoma in the elderly. Neuro Oncol.; 2000; 2, pp. 40-44. [DOI: https://dx.doi.org/10.1215/15228517-2-1-40] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11302253]
129. Wu, H.G.; Kim, I.H.; Ha, S.W.; Park, C.I.; Bang, Y.J.; Huh, D.S. Survival improvement with combined radio-chemotherapy in the primary central nervous system lymphomas. J. Korean Med. Sci.; 1999; 14, pp. 565-570. [DOI: https://dx.doi.org/10.3346/jkms.1999.14.5.565] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10576154]
130. Hiraga, S.; Arita, N.; Ohnishi, T.; Kohmura, E.; Yamamoto, K.; Oku, Y.; Taki, T.; Sato, M.; Aozasa, K.; Yoshimine, T. Rapid infusion of high-dose methotrexate resulting in enhanced penetration into cerebrospinal fluid and intensified tumor response in primary central nervous system lymphomas. J. Neurosurg.; 1999; 91, pp. 221-230. [DOI: https://dx.doi.org/10.3171/jns.1999.91.2.0221] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10433310]
131. Guha-Thakurta, N.; Damek, D.; Pollack, C.; Hochberg, F.H. Intravenous methotrexate as initial treatment for primary central nervous system lymphoma: Response to therapy and quality of life of patients. J. Neurooncol.; 1999; 43, pp. 259-268. [DOI: https://dx.doi.org/10.1023/A:1006210703827] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10563432]
132. Boiardi, A.; Silvani, A.; Pozzi, A.; Fariselli, L.; Broggi, G.; Salmaggi, A. Chemotherapy is effective as early treatment for primary central nervous system lymphoma. J. Neurol.; 1999; 246, pp. 31-37. [DOI: https://dx.doi.org/10.1007/s004150050302] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9987711]
133. Sandor, V.; Stark-Vancs, V.; Pearson, D.; Nussenblat, R.; Whitcup, S.M.; Brouwers, P.; Patronas, N.; Heiss, J.; Jaffe, E.; deSmet, M.
134. Corry, J.; Smith, J.G.; Wirth, A.; Quong, G.; Liew, K.H. Primary central nervous system lymphoma: Age and performance status are more important than treatment modality. Int. J. Radiat. Oncol. Biol. Phys.; 1998; 41, pp. 615-620. [DOI: https://dx.doi.org/10.1016/S0360-3016(97)00571-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9635710]
135. Cheng, A.L.; Yeh, K.H.; Uen, W.C.; Hung, R.L.; Liu, M.Y.; Wang, C.H. Systemic chemotherapy alone for patients with non-acquired immunodeficiency syndrome-related central nervous system lymphoma: A pilot study of the BOMES protocol. Cancer; 1998; 82, pp. 1946-1951. [DOI: https://dx.doi.org/10.1002/(SICI)1097-0142(19980515)82:10<1946::AID-CNCR19>3.0.CO;2-T]
136. Brada, M.; Hjiyiannakis, D.; Hines, F.; Traish, D.; Ashley, S. Short intensive primary chemotherapy and radiotherapy in sporadic primary CNS lymphoma (PCL). Int. J. Radiat. Oncol. Biol. Phys.; 1998; 40, pp. 1157-1162. [DOI: https://dx.doi.org/10.1016/S0360-3016(98)00002-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9539572]
137. Blay, J.Y.; Conroy, T.; Chevreau, C.; Thyss, A.; Quesnel, N.; Eghbali, H.; Bouabdallah, R.; Coiffier, B.; Wagner, J.P.; Le Mevel, A.
138. Laperriere, N.J.; Cerezo, L.; Milosevic, M.F.; Wong, C.S.; Patterson, B.; Panzarella, T. Primary lymphoma of brain: Results of management of a modern cohort with radiation therapy. Radiother. Oncol.; 1997; 43, pp. 247-252. [DOI: https://dx.doi.org/10.1016/S0167-8140(97)00074-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9215783]
139. Glass, J.; Shustik, C.; Hochberg, F.H.; Cher, L.; Gruber, M.L. Therapy of primary central nervous system lymphoma with pre-irradiation methotrexate, cyclophosphamide, doxorubicin, vincristine, and dexamethasone (MCHOD). J. Neurooncol.; 1996; 30, pp. 257-265. [DOI: https://dx.doi.org/10.1007/BF00177277] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8943101]
140. Schultz, C.; Scott, C.; Sherman, W.; Donahue, B.; Fields, J.; Murray, K.; Fisher, B.; Abrams, R.; Meis-Kindblom, J. Preirradiation chemotherapy with cyclophosphamide, doxorubicin, vincristine, and dexamethasone for primary CNS lymphomas: Initial report of radiation therapy oncology group protocol 88-06. J. Clin. Oncol.; 1996; 14, pp. 556-564. [DOI: https://dx.doi.org/10.1200/JCO.1996.14.2.556] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8636771]
141. Schaller, C.; Kelly, P.J. Primary central nervous system non-Hodgkin’s lymphoma (PCNSL): Does age and histology at presentation affect outcome?. Zentralbl. Neurochir.; 1996; 57, pp. 156-162. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8794548]
142. Krogh-Jensen, M.; D’Amore, F.; Jensen, M.K.; Christensen, B.E.; Thorling, K.; Pedersen, M.; Johansen, P.; Boesen, A.M.; Andersen, E. Clinicopathological features, survival and prognostic factors of primary central nervous system lymphomas: Trends in incidence of primary central nervous system lymphomas and primary malignant brain tumors in a well-defined geographical area. Population-based data from the Danish Lymphoma Registry, LYFO, and the Danish Cancer Registry. Leuk. Lymphoma; 1995; 19, pp. 223-233. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8535213]
143. Sarazin, M.; Ameri, A.; Monjour, A.; Nibio, A.; Poisson, M.; Delattre, J.Y. Primary central nervous system lymphoma: Treatment with chemotherapy and radiotherapy. Eur. J. Cancer; 1995; 31A, pp. 2003-2007. [DOI: https://dx.doi.org/10.1016/0959-8049(95)00345-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8562156]
144. Blay, J.Y.; Bouhour, D.; Carrie, C.; Bouffet, E.; Brunat-Mentigny, M.; Philip, T.; Biron, P. The C5R protocol: A regimen of high-dose chemotherapy and radiotherapy in primary cerebral non-Hodgkin’s lymphoma of patients with no known cause of immunosuppression. Blood; 1995; 86, pp. 2922-2929. [DOI: https://dx.doi.org/10.1182/blood.V86.8.2922.2922] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7579384]
145. Grangier, C.; Coucke, P.; Croisille, P.; Guillemin, C.; Mirimanoff, R.O. Primary cerebral lymphoma. A retrospective study of 27 cases. Strahlenther. Onkol.; 1994; 170, pp. 206-212. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8165517]
146. Miller, D.C.; Hochberg, F.H.; Harris, N.L.; Gruber, M.L.; Louis, D.N.; Cohen, H. Pathology with clinical correlations of primary central nervous system non-Hodgkin’s lymphoma. The Massachusetts General Hospital experience 1958–1989. Cancer; 1994; 74, pp. 1383-1397. [DOI: https://dx.doi.org/10.1002/1097-0142(19940815)74:4<1383::AID-CNCR2820740432>3.0.CO;2-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8055462]
147. Selch, M.T.; Shimizu, K.T.; De Salles, A.F.; Sutton, C.; Parker, R.G. Primary central nervous system lymphoma. Results at the University of California at Los Angeles and review of the literature. Am. J. Clin. Oncol.; 1994; 17, pp. 286-293. [DOI: https://dx.doi.org/10.1097/00000421-199408000-00002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8048389]
148. Glass, J.; Gruber, M.L.; Cher, L.; Hochberg, F.H. Preirradiation methotrexate chemotherapy of primary central nervous system lymphoma: Long-term outcome. J. Neurosurg.; 1994; 81, pp. 188-195. [DOI: https://dx.doi.org/10.3171/jns.1994.81.2.0188] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8027800]
149. Hayakawa, T.; Takakura, K.; Abe, H.; Yoshimoto, T.; Tanaka, R.; Sugita, K.; Kikuchi, H.; Uozumi, T.; Hori, T.; Fukui, H.
150. Liang, B.; Grant, R.; Junck, L.; Sandler, H.; Papadopoulos, S.; Kaminski, M.; Greenberg, H. Primary central-nervous-system lymphoma—Treatment with multiagent systemic and intrathecal chemotherapy with radiation-therapy. Int. J. Oncol.; 1993; 3, pp. 1001-1004. [DOI: https://dx.doi.org/10.3892/ijo.3.5.1001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21573465]
151. Fusejima, T.; Tanaka, R.; Takeda, N.; Hondo, H.; Onda, K.; Watanabe, M. Prognosis of primary malignant lymphoma of the central nervous system--a retrospective study of 32 cases. Neurol. Med. Chir.; 1992; 32, pp. 818-823. [DOI: https://dx.doi.org/10.2176/nmc.32.818] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1280339]
152. Remick, S.C.; Diamond, C.; Migliozzi, J.A.; Solis, O.; Wagner, H., Jr.; Haase, R.F.; Ruckdeschel, J.C. Primary central nervous system lymphoma in patients with and without the acquired immune deficiency syndrome. A retrospective analysis and review of the literature. Medicine; 1990; 69, pp. 345-360. [DOI: https://dx.doi.org/10.1097/00005792-199011000-00003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2233232]
153. Michalski, J.M.; Garcia, D.M.; Kase, E.; Grigsby, P.W.; Simpson, J.R. Primary central nervous system lymphoma: Analysis of prognostic variables and patterns of treatment failure. Radiology; 1990; 176, pp. 855-860. [DOI: https://dx.doi.org/10.1148/radiology.176.3.2389047] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2389047]
154. Brada, M.; Dearnaley, D.; Horwich, A.; Bloom, H.J. Management of primary cerebral lymphoma with initial chemotherapy: Preliminary results and comparison with patients treated with radiotherapy alone. Int. J. Radiat. Oncol. Biol. Phys.; 1990; 18, pp. 787-792. [DOI: https://dx.doi.org/10.1016/0360-3016(90)90398-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1691160]
155. Socié, G.; Piprot-Chauffat, C.; Schlienger, M.; Legars, D.; Thurel, C.; Mikol, J.; Ifran, N.; Brière, J.; Pene, F.; Gindrey-Vie, B.
156. Grote, T.H.; Grosh, W.W.; List, A.F.; Wiley, R.; Cousar, J.B.; Johnson, D.H. Primary lymphoma of the central nervous system. A report of 20 cases and a review of the literature. Am. J. Clin. Oncol.; 1989; 12, pp. 93-100. [DOI: https://dx.doi.org/10.1097/00000421-198904000-00001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2650529]
157. Pollack, I.F.; Lunsford, L.D.; Flickinger, J.C.; Dameshek, H.L. Prognostic factors in the diagnosis and treatment of primary central nervous system lymphoma. Cancer; 1989; 63, pp. 939-947. [DOI: https://dx.doi.org/10.1002/1097-0142(19890301)63:5<939::AID-CNCR2820630526>3.0.CO;2-V] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2914300]
158. Vakili, S.T.; Muller, J.; Shidnia, H.; Campbell, R.L. Primary lymphoma of the central nervous system: A clinicopathologic analysis of 26 cases. J. Surg. Oncol.; 1986; 33, pp. 95-102. [DOI: https://dx.doi.org/10.1002/jso.2930330208] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3762191]
159. Bogdahn, U.; Bogdahn, S.; Mertens, H.G.; Dommasch, D.; Wodarz, R.; Wünsch, P.H.; Kühl, P.; Richter, E. Primary non-Hodgkin’s lymphomas of the CNS. Acta Neurol. Scand.; 1986; 73, pp. 602-614. [DOI: https://dx.doi.org/10.1111/j.1600-0404.1986.tb04607.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3751501]
160. Jellinger, K.; Radaskiewicz, T.H.; Slowik, F. Primary malignant lymphomas of the central nervous system in man. Malignant Lymphomas of the Nervous System: International Symposium; Springer: Berlin/Heidelberg, Germany, 1975.
161. Morell, A.A.; Shah, A.H.; Cavallo, C.; Eichberg, D.G.; Sarkiss, C.A.; Benveniste, R.; Ivan, M.E.; Komotar, R.J. Diagnosis of primary central nervous system lymphoma: A systematic review of the utility of CSF screening and the role of early brain biopsy. Neurooncol. Pract.; 2019; 6, pp. 415-423. [DOI: https://dx.doi.org/10.1093/nop/npz015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31832211]
162. Balmaceda, C.; Gaynor, J.J.; Sun, M.; Gluck, J.T.; DeAngelis, L.M. Leptomeningeal tumor in primary central nervous system lymphoma: Recognition, significance, and implications. Ann. Neurol.; 1995; 38, pp. 202-209. [DOI: https://dx.doi.org/10.1002/ana.410380212] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7654067]
163. Calimeri, T.; Anzalone, N.; Cangi, M.G.; Fiore, P.; Gagliardi, F.; Miserocchi, E.; Ponzoni, M.; Ferreri, A.J.M. Molecular diagnosis of primary CNS lymphoma in 2024 using MYD88Leu265Pro and IL-10. Lancet Haematol.; 2024; 11, pp. e540-e549. [DOI: https://dx.doi.org/10.1016/S2352-3026(24)00104-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38937027]
164. Bravetti, C.; Degaud, M.; Armand, M.; Sourdeau, E.; Mokhtari, K.; Maloum, K.; Osman, J.; Verrier, P.; Houillier, C.; Roos-Weil, D.
165. Geng, M.; Song, Y.; Xiao, H.; Wu, Z.; Deng, X.; Chen, C.; Wang, G. Clinical significance of interleukin-10 concentration in the cerebrospinal fluid of patients with primary central nervous system lymphoma. Oncol. Lett.; 2021; 21, 2. [DOI: https://dx.doi.org/10.3892/ol.2020.12263] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33240408]
166. Rupprecht, T.A.; Manz, K.M.; Fingerle, V.; Lechner, C.; Klein, M.; Pfirrmann, M.; Koedel, U. Diagnostic value of cerebrospinal fluid CXCL13 for acute Lyme neuroborreliosis. A systematic review and meta-analysis. Clin. Microbiol. Infect.; 2018; 24, pp. 1234-1240. [DOI: https://dx.doi.org/10.1016/j.cmi.2018.04.007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29674128]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Background: The gold standard for diagnosing primary central nervous system lymphoma (PCNSL) is brain biopsy, an invasive procedure with significant risks. The role of cerebrospinal fluid (CSF) examination, limited to cytology and flow cytometry in current practice, is acknowledged as a less invasive diagnostic method. We aimed to summarize available data concerning the efficacy and actual use of current standard CSF diagnostics in the diagnosis of PCNSL. Methods: A systematic review and meta-analysis of 144 studies (n = 9493 patients) was conducted, assessing detection rates of cytology and flow cytometry and the proportion of diagnoses based on CSF analysis. The QUADAS-2 tool was used to evaluate study quality and bias. Results: Meta-analysis showed an 18% pooled detection rate for positive CSF results, with 17% for cytology and 20% for flow cytometry. Only 8% of diagnoses were made using CSF analysis. Most studies had a high risk of bias. Conclusions: Despite its established role in guidelines, CSF analysis remains underutilized for diagnosing PCNSL, with room to improve its clinical impact. Novel techniques, such as chemokines and circulating tumor DNA (cfDNA) analysis, hold promise to unlock the untapped potential of CSF diagnostics, offering significant advancements in non-invasive PCNSL diagnosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; [email protected] (J.v.R.); [email protected] (T.S.); [email protected] (P.B.); [email protected] (T.S.), Department of Neurology, St. Antonius Hospital, 3543 AZ Utrecht, The Netherlands
2 Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; [email protected] (J.v.R.); [email protected] (T.S.); [email protected] (P.B.); [email protected] (T.S.)
3 Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; [email protected]
4 Department of Neurology, St. Antonius Hospital, 3543 AZ Utrecht, The Netherlands