Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intelligent Connected Vehicles (ICVs) impose stringent requirements on real-time computational services. However, limited onboard resources and the high latency of remote cloud servers restrict traditional solutions. Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC), which deploys computing and storage resources at the network edge, offers a promising solution. In UAV-assisted vehicular networks, jointly optimizing content and service caching, computation offloading, and UAV trajectories to maximize system performance is a critical challenge. This requires balancing system energy consumption and resource allocation fairness while maximizing cache hit rate and minimizing task latency. To this end, we introduce system efficiency as a unified metric, aiming to maximize overall system performance through joint optimization. This metric comprehensively considers cache hit rate, task computation latency, system energy consumption, and resource allocation fairness. The problem involves discrete decisions (caching, offloading) and continuous variables (UAV trajectories), exhibiting high dynamism and non-convexity, making it challenging for traditional optimization methods. Concurrently, existing multi-agent deep reinforcement learning (MADRL) methods often encounter training instability and convergence issues in such dynamic and non-stationary environments. To address these challenges, this paper proposes a MADRL-based joint optimization approach. We precisely model the problem as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP) and adopt the Multi-Agent Proximal Policy Optimization (MAPPO) algorithm, which follows the Centralized Training Decentralized Execution (CTDE) paradigm. Our method aims to maximize system efficiency by achieving a judicious balance among multiple performance metrics, such as cache hit rate, task delay, energy consumption, and fairness. Simulation results demonstrate that, compared to various representative baseline methods, the proposed MAPPO algorithm exhibits significant superiority in achieving higher cumulative rewards and an approximately 82% cache hit rate.

Details

Title
Joint Caching and Computation in UAV-Assisted Vehicle Networks via Multi-Agent Deep Reinforcement Learning
Author
Wu, Yuhua  VIAFID ORCID Logo  ; Huang Yuchao; Wang, Ziyou  VIAFID ORCID Logo  ; Xu Changming  VIAFID ORCID Logo 
First page
456
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233140539
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.