Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.

Details

Title
Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations
Author
Maximiliano, Gavilán-Arriazu E 1   VIAFID ORCID Logo  ; Ruderman Andrés 2 ; Bederian Carlos 3   VIAFID ORCID Logo  ; Moran, Vieyra Eduardo 4 ; Leiva Ezequiel P. M. 5   VIAFID ORCID Logo 

 Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4206XCP, Argentina; [email protected], Laboratorio de Energías Sustentables, Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina; [email protected] 
 Laboratorio de Energías Sustentables, Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina; [email protected], Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000GYA, Argentina; [email protected] 
 Instituto de Física Enrique Gaviola, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000GYA, Argentina; [email protected] 
 Instituto de Bionanotecnología del NOA (INBIONATEC), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4206XCP, Argentina; [email protected] 
 Laboratorio de Energías Sustentables, Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000GYA, Argentina; [email protected], Instituto de Fisicoquímica de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000GYA, Argentina 
First page
663
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233183675
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.