Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Gas voids inevitably form during the solidification of phase change materials (PCMs) due to volumetric contraction and thus deteriorate the thermal conductivity of solidified PCMs. In this work, the gas void morphology and distribution in solidified pure paraffin within a cubic thermal energy storage unit are experimentally studied. The three-dimensional structure of the solidified pure paraffin is reconstructed via computed tomography (CT) scanning with a resolution of up to 25 µm. Four distinct morphological types of gas voids are found, including irregular elliptical gas voids, elongated “needle-like” gas voids, micro gas voids, and large circular gas voids. The formation mechanisms of each type are analyzed. The morphology and distribution of gas voids indicate that the solidified pure paraffin structure is anisotropic. The effective thermal conductivity (ETC) of this solid–gas structure is numerically evaluated using lattice Boltzmann simulations, and a two-term power equation is fitted. The results show that the ETC in the vertical direction is significantly lower than in the horizontal direction and the ETC could be reduced by as much as 31.5% due to the presence of gas voids.

Details

Title
Gas Void Morphology and Distribution in Solidified Pure Paraffin Within a Cubic Thermal Energy Storage Unit
Author
Wang, Donglei; Zhao, Qianqian; Huang Rongzong  VIAFID ORCID Logo 
First page
3686
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233203330
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.