Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this work is to investigate the effect of curing temperature and time on the development of compressive strength in geopolymer mortars produced using ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Considering curing circumstances, both the activation energy and the reference temperature could be used properly to build a reliable anticipated model for predicting the compressive strength of geopolymer-based products (mortar and concrete) using maturity-based techniques. In this study, the compressive strength development of geopolymer mortar made from (FA) and (GGBFS) under varying curing conditions. The mortar was prepared using an alkali solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) in a 1:1 ratio, with NaOH molarity of 12. Specimens were cast following ASTM C109 standards, with a binder/sand ratio of 1:2.75, and compacted for full densification. FA-based mortar was cured at 40 °C, 80 °C, and 120 °C, while GGBFS-based mortar was cured at 5 °C, 15 °C, and 40 °C for durations of 0.5 to 32 days. Compressive strength was evaluated at each curing period, and data were analyzed using ASTM C1074 procedures alongside a computational model to determine the best-fit datum temperature and activation energy. The Nurse-Saul maturity method and Arrhenius equation were applied to estimate the equivalent age and maturity index of each mix. A predictive model was developed for geopolymer concrete prepared at an alkali-to-binder ratio of 0.45 and NaOH molarity of 12. The final equation demonstrated high accuracy, offering a reliable tool for predicting geopolymer strength under diverse curing conditions and providing valuable insights for optimizing geopolymer concrete formulations.

Details

Title
Feasibility of the Maturity Concept for Strength Prediction in Geopolymer Based Materials
Author
Abdulmajid Rafah R. 1 ; Bzeni, Dillshad K 2   VIAFID ORCID Logo  ; Abed, Farid H 3   VIAFID ORCID Logo  ; Hamada, Hussein M 4   VIAFID ORCID Logo 

 College of Engineering, Erbil Polytechnic University & Scientific Research Center of Erbil Polytechnic University, Erbil 44001, Iraq; [email protected] 
 College of Engineering, Salahaddin University, Erbil 44001, Iraq 
 College of Engineering, Research Center of the American University of Sharjah, Sharjah 26666, United Arab Emirates; [email protected] 
 Architecture Department, Al-Qalam University College, Kirkuk 36001, Iraq; [email protected] 
First page
329
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233224867
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.