Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. Methods: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. Results: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. Conclusions: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut.

Details

Title
Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome
Author
Dong Wenran; Wang, Ying; Li Huajinzi; Ma, Huilin; Gong Yingxi; Luo Gan; Gao Xiaoyan
First page
433
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
22181989
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233231613
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.