Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Coal gasification slag (CGS) is a solid byproduct generated during coal gasification. Stacking and land-filling of CGS wastes substantial land resources and has significant environmental risks. In this paper, based on the Ca/Si and Si/Al ratios of the raw materials, the mix design of alkali-activated CGS concrete was optimized using a pure center-of-gravity design method. The compressive and flexural strengths of geopolymer concrete with varying mix proportions were measured to investigate the effects of sodium silicate modulus, material content, and dry density on its mechanical properties. Specimens of different sizes were prepared to analyze the influence of testing methods on the compressive, flexural, and tensile properties. The results indicate that the mechanical properties of geopolymer concrete are significantly influenced by the raw material composition and the modulus of the activator. With increasing curing age, both compressive and flexural strengths exhibit varying degrees of improvement. The stress-strain behavior of alkali-activated CGS concrete aligns closely with that of ordinary concrete. A comparative analysis of 100 mm length and 20 mm length cubic specimens revealed a compressive strength size conversion coefficient of approximately 0.456, while the flexural specimen exhibited a coefficient of 0.599. For tensile strength evaluation, both the Brazilian splitting method and the double punch test method yielded consistent and reliable results, demonstrating their suitability for assessing CGS-based concrete.

Details

Title
Study on Mechanical Properties of Alkali-Activated Coal Gasification Slag Concrete
Author
Shen Rongjian 1 ; Li, Xiaojun 2   VIAFID ORCID Logo  ; Shen, Li 2 

 Shanxi Anjian Investment and Construction Co., Ltd., Xi’an 710003, China; [email protected] 
 College of Safety science and Engineering, Xian University of Science and Technology, Xi’an 710054, China; [email protected] 
First page
3240
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233232166
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.