Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microfluidics is a rapidly advancing field focused on optimizing microdevices for applications such as organ-on-a-chip systems and enhancing laboratory analyses. Understanding the physical parameters of droplet generation is crucial for these devices. Computational fluid dynamics (CFD) techniques are essential for providing insights into the limitations and efficiency of numerical methods for studying fluid dynamics and improving our understanding of various application conditions. However, the influence of different numerical methods on the analysis of physical parameters in problems involving droplet generation in microchannels remains an area of ongoing research. This study implements the Volume of Fluid (VOF) method to investigate key physical parameters, including droplet size and the effect of the capillary number on fluid regimes, in droplet generation within a microchannel featuring a T-junction geometry. We compare the VOF method with the widely used Level Set Method (LSM) to evaluate its suitability for this context. The results show that the VOF method agrees with the LSM in fundamental outcomes, such as the reduction in droplet diameter as the flow rate ratio increases and the identification of the capillary number’s influence on fluid regime classification. The VOF method provides a clearer understanding of transitions between fluid regimes by detecting stages of non-uniformity in droplet size. It identifies a transition region between regimes with variations in droplet size, proving to be effective at mapping fluid flow regimes. This study highlights the potential of the VOF method in offering more detailed insights into instabilities and transitions between fluid regimes at the microscale.

Details

Title
Volume of Fluid (VOF) Method as a Suitable Method for Studying Droplet Formation in a Microchannel
Author
da Silva Felipe Santos Paes  VIAFID ORCID Logo  ; Lisboa-Filho, Paulo Noronha  VIAFID ORCID Logo 
First page
757
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3233234167
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.