1. Introduction
Shiga toxin-producing Escherichia coli (STEC) is a major cause of intestinal infections and foodborne outbreaks worldwide [1,2]. In the European Union, STEC is the third most common foodborne pathogen, contributing to an estimated 2.8 million cases of enteric diseases annually [3]. Domestic animals, especially ruminants, play a key role as reservoirs for STEC infections, with transmission occurring primarily through direct contact or consumption of contaminated food [4].
The pathogenicity of STEC is primarily attributed to the production of Shiga toxins (Stx), which are classified into two main types, Stx1 and Stx2, based on sequence similarity, antigenic differences, and key biochemical characteristics [5,6]. These toxins are encoded by the stx1 and stx2 genes. The stx1 gene has four subtypes—stx1a, stx1c, stx1d, and stx1e—while the stx2 gene is more diverse, encompassing currently 15 known subtypes, from stx2a to stx2o [7,8]. Studies have shown that strains producing stx2, particularly the stx2a subtype, are more commonly associated with severe diseases like hemolytic uremic syndrome (HUS) [7,8,9]. This has led to the identification of STEC pathotypes based on stx profiles, which can inform both clinical management and public health strategies. Although this approach is not yet officially integrated into clinical practice, enhancing the use of stx subtyping—especially in regions with a high burden of STEC infections—could improve risk assessment, guide treatment decisions, and strengthen outbreak response measures by allowing more accurate identification of high-virulence strains. Another critical virulence factor in STEC is intimin, a protein encoded by the eae gene, which facilitates the intimate attachment of STEC to intestinal epithelial cells [10]. Strains that are intimin-positive are often linked to serious conditions, including hemorrhagic colitis (HC) and HUS [11,12,13,14]. Over 20 intimins mediating the attachment to intestinal cells have currently been described [12,13,15,16,17,18]. The combination of eae subtype γ1 and stx2a is more associated with severe disease [12,19]. It is also important to note that disease severity is multifactorial, influenced by host factors, microbiota, and environmental conditions, and cannot be inferred solely from the STEC strain characteristics [20,21,22,23,24,25,26,27]. STEC includes over 400 serotypes, but severe human illness is usually caused by a relative small subset of serogroups, including non-O157 STEC serogroups O26, O45, O103, O111, O121, O145, referred to as the “Big Six”, which along with the globally dominant O157:H7, form the “Top Seven” [15,28,29].
Although the significance of STEC is well documented in developed countries, the situation in developing nations remains largely unclear. Many of these countries lack comprehensive data on key serogroups and serotypes, making it difficult to track outbreaks and identify sources of infection. Contributing factors may include limited financial resources, a shortage of trained personnel, inadequate laboratory infrastructure, and challenges related to sample collection and transportation. This review aims to fill this gap by reporting the distribution and virulence traits of STEC strains isolated from various sources across developing countries for the first time. Furthermore, this review seeks to highlight the worldwide distribution and public health impact of major STEC serogroups and serotypes, emphasizing the common prevalence patterns of dominant strains in both developed and developing nations and the importance of strengthening detection, surveillance, and control strategies, especially in food safety.
2. Materials and Methods
Data for this review were collected from online databases including Google Scholar, PubMed, and Web of Science. We searched peer-reviewed literature, gray literature (e.g., preprints, surveillance data), and publicly available notifiable disease data (e.g., nationally reported, laboratory-confirmed STEC infections). The search was limited to studies published between January 2014 and October 2024, accessed between 19 February and 1 November 2024. We followed the Prisma guidelines (
The selected papers were evaluated based on the following criteria: isolation of non-sorbitol fermenting E. coli O157, isolation of non-O157 E. coli carrying stx genes or producing Shiga toxin, detection of stx genes in human and animal stool by polymerase chain reaction (PCR) or other molecular methods, and detection of Shiga toxin in clinical stool by enzyme-linked immunosorbent assay or cell cytotoxicity assay. Urinary and asymptomatic infections were excluded (Figure 1). The data were organized using Microsoft Excel 2019 (Microsoft Corporation), categorized by study DOI, year, country, serogroup, serotype, Shiga toxin-encoding genes (stx1 and stx2), stx subtypes, and intimin-encoding gene (eae). The data were further grouped into three categories: humans, animals (cattle, sheep, goats, pigs, and pigeons), and foods (meat, milk, and vegetables).
3. Results
We reviewed 250 papers that provided data on STEC in 39 developing countries across Africa (17 countries), Asia (15 countries), and Latin America and the Caribbean (7 countries). These papers covered 11 regions, including East Africa (19 papers), West Africa (32 papers), North Africa (77 papers), Central Africa (1 paper), Southern Africa (9 papers), East Asia (28 papers), South Asia (46 papers), Western Asia (24 papers), the Caribbean (1 paper), Mexico and Central America (5 papers), and South America (8 papers). Information on STEC serogroups (O), serotypes (O:H), Shiga toxin genes (stx1, stx2) and respective subtypes, and the intimin gene (eae) was collected for 8986 cases, obtained from humans (1053 cases), animals (5292 cases), and foods (2641 cases). The animal isolates included cattle (2629), sheep (1047), goats (998), pigs (539), and pigeons (79). The food isolates came from meat (1386), milk (769), and vegetables (486).
3.1. Serogroups and Serotypes
Out of 8986 reported Shiga toxin-positive (stx-positive) isolates from developing countries between 2014 and 2024, data on STEC serogroups (O) and serotypes (O:H) were available for 5026 cases (55.9%) (Table 1 and Figure 2). These comprise 389, 2936, and 1701 isolates from humans, animals and food, respectively. Among the 389 human isolates, the 15 most frequently reported serogroups/serotypes were O111 (9.5%, 37/389), O157 (9.5%, 37/389), O26 (8.7%, 34/389), O26:H11 (8.2%, 32/389), O55 (7.1%, 28/389), O157:H7 (6.4%, 25/389), O128 (4.1%, 16/389), O111:H8 (3.8%, 15/389), O91:H14 (3.5%, 14/389), O104 (3.3%, 13/389), O91 (2.8%, 11/389), O145 (2.8%, 11/389), O128:H2 (2.5%, 10/389), O118 (1.7%, 7/389), and O151:H2 (1.7%, 7/389) (Table 1 and Figure 2).
Out of the 2936 reported animal isolates, the top 15 serogroups/serotypes were O26 (10.9%, 321/2936), O157:H7 (8.7%, 257/2936), O157 (5.6%, 166/2936), O103 (5.2%, 154/2936), O3 (3.3%, 99/2936), O103:H8 (3.3%, 98/2936), O3:H21 (3.2%, 94/2936), O45 (2.9%, 86/2936), O111 (2.7%, 82/2936), O43 (2.6%, 78/2936), O43:H2 (2.5%, 76/2936), O145 (2.1%, 64/2936), O8 (2.0%, 61/2936), O76:H19 (2.0%, 60/2936), and O76 (1.8%, 54/2936) (Table 1 and Figure 2).
For the 1701 food isolates, the 15 most detected serogroups/serotypes were O157 (14.7%, 251/1701), O157:H7 (14.2%, 242/1701), O111 (12.2%, 208/1701), O26 (8.5%, 146/1701), O26:H11 (6.6%, 113/1701), O128 (3.8%, 65/1701), O55 (3.2%, 55/1701), O103 (2.9%, 50/1701), O91 (2.8%, 48/1701), O121 (2.5%, 43/1701), O128:H2 (2.5%, 43/1701), O145 (2.4%, 41/1701), O45 (1.8%, 32/1701), O113:H21 (1.4%, 24/1701), and O146 (1.4%, 24/1701) (Table 1 and Figure 2).
3.2. Shiga Toxins and Intimin Genes
In 1053 isolates from humans, stx1 was reported in 427 cases (40.5%), stx2 in 394 cases (37.4%), and stx1 and stx2 in 232 cases (22.0%). Among 5292 animal isolates, stx1 was detected in 1821 cases (34.4%), stx2 in 2234 cases (42.2%), and both subtypes in 1237 cases (23.3%). In the case of 2641 STEC isolates from food sources, stx1 was present in 1083 cases (41.0%), stx2 in 990 cases (37.4%), and both stx1 and stx2 in 568 cases (21.5%). The intimin-coding gene eae was present in 43.3% of human cases (457/1053), 18.1% of animal isolates (959/5292), and 32.4% of food-sourced samples (858/2641) (Table 2 and Figure 2).
3.3. Stx Gene Subtypes
Among strains with reported subtyping data, the most common stx subtypes in human isolates were stx1a (67.0%, 57/85), stx2a (14.1%, 12/85), and stx2c (7.0%, 6/85). In animal isolates, the most prevalent stx subtypes were stx2e (27.7%, 269/971), stx2k (17.5%, 170/971), and stx1c (16.3%, 159/971). For food isolates, the most frequently detected stx subtypes were stx2c (34.5%, 37/107), stx2e (26.1%, 28/107), and stx1c (12.1%, 13/107) (Table 3 and Figure 3).
4. Discussion
Shiga toxin-producing Escherichia coli or STEC is a major cause of foodborne outbreaks worldwide [280,281]. It produces Shiga toxin, also known as verocytotoxin, which is structurally and functionally similar to the toxin produced by Shigella dysenteriae [7]. STEC has been historically categorized into different serogroups based on the O antigen in its cell wall and into serotypes based on both the O antigen and the flagellar H antigen [282]. This review provides the first comprehensive description of key serogroups/serotypes and Shiga toxin genes found in STEC isolates from human, animal, and food samples across developing countries, over a 10-year period (2014–2024).
The data reviewed here highlight the global distribution and public health significance of various STEC serogroups and serotypes, underscoring also a shared pattern of predominant STEC in both developed and developing countries (Figure 4). The data collected from developing countries we surveyed indicate that the serogroups O111, O157, and O26, along with the serotype O26:H11, are most frequently reported in human STEC cases, together accounting for 35.9% of all confirmed cases with known serogroups and serotypes. These serogroups are associated with severe human illnesses, including hemorrhagic colitis and HUS, and have been widely studied for their public health significance [29,283]. Serogroup O157, in particular, is a major cause of foodborne outbreaks, contributing to about 36% of all STEC infections in the United States, and has been linked to multiple large-scale outbreaks, including two involving ground beef in 2022 [284,285,286,287]. In Europe, O157 remains the most frequently detected serogroup, and in countries such as the United Kingdom, Australia, and Japan, human infections with O157 strains are consistently reported [3,288,289,290]. O111 is included in the USDA-FSIS’s list of “Big Six” non-O157 serogroups requiring monitoring in meat production and has also been implicated in clinical cases worldwide [291,292]. Similarly, O26:H11, another “Big Six” serotype, was responsible for a major outbreak in France in 2022, with 50 reported cases of HUS [3]. Moreover, O26 is the major non-O157 serogroup isolated from clinical samples reported in Japan and Canada [290,293]. As part of the USDA-FSIS “Big Six”, O26:H11′s prevalence in outbreaks in Europe reinforces its status as a high-risk pathogen. These trends illustrate the global significance of these serogroups in STEC infections, indicating a need for continued attention to their detection, monitoring, and control, especially in food safety practices.
The serogroups O26, O157, and O103, along with the serotype O157:H7, were the most frequently detected STEC strains in animal isolates across the regions surveyed. These findings highlight the presence of these serogroups with animal reservoirs, particularly cattle, where they persist in the intestinal tract and can contaminate meat during slaughter and processing [294]. The prevalence of O157:H7 in animals is particularly concerning due to its association with severe outbreaks worldwide, and as such, remains the most studied and monitored STEC lineage [1,5]. The “Big Six” serogroup O103 has also emerged as a significant pathogen. In Europe, it was ranked as the third most frequent STEC serogroup in human isolates between 2007 and 2022 [3]. In the United States, O103 is recognized as one of the most common non-O157 serogroups linked to foodborne illness [285]. In Japan and Canada, it is, after O26, the most frequently reported non-O157 STEC serogroup in clinical samples [290,293,295]. The frequent detection of these STEC strains in animal isolates underscores the importance of ongoing surveillance in livestock populations to better understand the dynamics of transmission from animals to humans via contaminated meat and dairy products.
In food isolates, O157, O157:H7, and O111 were most commonly detected, consistent with global trends [296]. These findings indicate that, similar to other parts of the world, the most commonly identified STEC strains in food sources in developing countries are those with a high pathogenic potential, such as O157 and O111.
Interestingly, O145, which is commonly reported in the U.S. and Europe, was notably absent from the ‘’Top Seven’’ serogroups in the developing countries surveyed. This discrepancy could be attributed to differences in detection capabilities, where less comprehensive or more targeted diagnostic methods in developing regions might focus on the better-known, high-risk serogroups [297]. Indeed, in developed countries, sequencing is also used, which allows the in silico determination of serogroup and serotype [298]. This advanced technology enables the detection of a broader range of serogroups, such as O145, that are not as readily identified in developing regions.
The ongoing global monitoring of these serogroups is crucial, as they are included in food safety guidelines such as the USDA-FSIS’s “Big Six”, and continue to be linked to outbreaks worldwide, reinforcing the need for heightened surveillance and control measures, especially in food production and processing environments. Figure 4 shows the three most frequently reported non-O157 STEC serogroups in different countries and regions, based on data accessed in October 2024 from public agencies and reviewed literature. The data cover both developed and developing nations, including Canada (O26, O103, O111), the United States (O26, O103, O111), Europe (O26, O103, O146), the United Kingdom (O26, O146, O91), Australia (O111, O26, O113), Japan (O26, O103, O111), Africa (O111, O26, O55), Asia (O104, O26, O112), and Latin America and the Caribbean (O118, O111, O123).
Among the human, animal, and food isolates, the highest rate of eae+ strains was observed in human samples (43.3%). The 2022 European surveillance report indicated that 44.8% of STEC strains isolated from severe human cases, including HUS and bloody diarrhea, were positive for both stx2 and eae, further emphasizing the pathogenic potential of strains with these virulence traits in clinical settings [3,4]. In line with these findings, the survey also showed that stx1a and stx2a are carried by more than 81% of human isolates. In Europe, similarly, stx2a and stx2d were the most prevalent subtypes linked to severe human cases in 2022 [3]. stx2, particularly stx2a and stx2d, have been associated with elevated cytotoxicity and severe human illness, such as HUS [299,300,301,302] compared to the morbidity caused by stx1a+ STEC [303,304,305,306]. While stx2 is often associated with more severe disease outcomes, the increased cytotoxicity of stx1 in Vero cells, however, suggests that strains producing this toxin could also pose significant risks [300,307,308]. These findings underscore the critical role of these particular Shiga toxin suballeles in disease severity and clinical outcomes of STEC infections globally.
In animal isolates, stx2e was found to be the most prevalent Shiga toxin subtype. This observation might, however, be biased by the high number of stx2e-positive isolates reported from China, where stx2e-producing strains, primarily from pigs, have been frequently identified [169,170] (Table 3). While stx2e is clearly prevalent in animal populations [309], it has not been documented as a major culprit of human infections in Europe and the United States [3,7,283,285]. In food samples, stx2c was the most commonly reported Shiga toxin subtype in developing countries, and it was also the fourth most prevalent subtype of human infection in Europe in 2022, following stx2a, stx1a, and stx2b [3], which highlights the ongoing risk of foodborne transmission of stx2c+ strains.
Food products play a crucial role in the transmission via the ingestion of contaminated food, though they are not considered true reservoirs for STEC [4,5]. Overall, the high prevalence of stx2a in human infections and the increasing detection of stx2c in food isolates in developing countries emphasize the need for enhanced food safety measures and global surveillance efforts.
The data from our review highlight notable regional disparities in the reporting of STEC prevalence, with a clear gap observed in regions such as Central Africa, the Caribbean, Mexico, and Central America, where reports were less frequent compared to North Africa, South Asia, and West Africa (Table 4). This discrepancy may be linked to the economic conditions of low-income countries, which often face limitations in research funding and infrastructure, hindering comprehensive surveillance of STEC. Additionally, we observed regional variations in the major serogroups and serotypes reported (Table 4). These differences may be influenced by factors such as human-animal interactions (e.g., close contact with cattle, goats, and sheep), food production practices (e.g., traditional food preparation methods like raw milk consumption and fresh produce handling), and dietary habits (e.g., consuming raw or undercooked meat, seafood, and fresh vegetables) [310,311,312,313]. Recognizing these regional patterns is essential for developing targeted interventions to reduce the burden of STEC infections worldwide.
Among developing countries that reported STEC cases, only 55.9% included information on defined serogroups. This reflects limited surveillance capacity, with resources may be preferentially directed toward a small subset of well-known STEC serogroups, or a tendency to stop at identifying the STEC pathotype without further serogroup characterization, largely due to restricted diagnostic capabilities, particularly in molecular analyses and sequencing. Addressing these gaps is essential to improving STEC surveillance and strengthening our global understanding of its epidemiology.
5. Conclusions
Over the past two decades, STEC has been responsible for large-scale outbreaks, affecting thousands of people worldwide. Monitoring systems for STEC are well-established in countries like the United States, the United Kingdom, Europe, Australia, Japan, and Canada; however, there is a notable lack of data from developing countries, primarily due to the limited availability of organized molecular diagnostic networks and surveillance systems. The integration of genomics sequencing in STEC surveillance has significantly enhanced the ability to characterize STEC isolates [314,315]. However, many developing countries lack the infrastructure and resources for genomic-based and molecular biosurveillance. This review aims to fill that gap by providing an overview of STEC prevalence in regions with limited surveillance. To address this disparity, we recommend the establishment of reference laboratories for STEC in developing countries, similar to those operating in Argentina and Brazil. Such laboratories would enhance data quality, improve monitoring and tracking capabilities, and ultimately help reduce STEC infection. Furthermore, these reference laboratories could synergistically collaborate with existing laboratories, enabling the creation of more comprehensive global data on STEC prevalence in support of more effective public health strategies and interventions.
A.N. and M.E. designed the study, supervised the project, revised the data analyses, and drafted the manuscript. Z.K., S.S.K., A.D., A.S.M.S., H.J., and M.H. conducted the literature search and collected the data. M.A.B., F.G., L.F.d.S., and K.N. revised the data analyses and edited the manuscript. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.
The authors declare no conflicts of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 1 Flow chart of papers selection, exclusion, evaluation, and inclusion scheme.
Figure 2 The ‘’Top Seven’’ most prevalent STEC serogroups/serotypes in humans (A), animals (B), and foods (C), and major Shiga toxin gene alleles in humans (D), animals (E), and foods (F), based on data collected in developing countries between 2014 and 2024.
Figure 3 Prevalence of stx gene subtypes based on data reported for humans (A), animals (B), and foods (C) in developing countries from 2014 to 2024.
Figure 4 Global prevalence of the three most common non-O157 STEC serogroups. Countries with no available data in the surveyed databases are shown in gray (accessed October 2024).
Data on the prevalence of Shiga toxin-producing Escherichia coli (STEC) serogroups (O) and serotypes (O:H) from humans, animals, and foods collected from online databases in developing countries from 2014 to 2024.
Source Country 1,2 | Serotype 3 | Year | ||
---|---|---|---|---|
Humans | Animals 4 | Foods 5 | ||
Ethiopia | O157:ND (6) 6 | O157:ND (72), O157:H7 (45) | O157:ND (8), O157:H7 (29) | 2017–2023 |
South Sudan | O26:H11 (3), O111:H8 (2) | - | - | 2023 |
Tanzania | - | O113:H21 (2), O157:H7 (4) | - | 2014 |
Benin | - | O157:ND (2) | O157:ND (2) | 2016–2020 |
Nigeria | O26:ND (2), O103:ND (1), O128:ND (1), O145:ND (1), O157:ND (10) | O26:ND (22), O91:ND (18), O103:ND (6), O111:ND (3), O157:ND (20), O157:H7 (8) | O26:ND (18), O45:ND (5), O91:ND (4), O103:ND (7), O111:ND (15), O121:ND (1), O128:ND (5), O138:ND (3), O145:ND (5), O157:ND (19), O157:H7 (11) | 2014–2023 |
Senegal | - | O26:ND (2), O111:ND (1), O145:ND (1) | O111:ND (1) | 2023 |
Algeria | - | O26:ND (8), O111:ND (5), O157:ND (2) | O26:ND (3), O111:ND (2), O157:ND (30) | 2014–2020 |
Egypt | O3:ND (1), O6:ND (5), O26:ND (26), O26:H11 (14), O45:ND (5), O55:ND (28), O75:ND (1), O91:ND (10), O103:ND (2), O103:H2 (1), O104:ND (6), O111:ND (33), O111:H8 (6), O113:ND (2), O113:H4 (1), O117:ND (4), O121:ND (5), O128:ND (15), O128:H2 (10), O145:ND (6), O146:ND (1), O146:H21 (1), O157:ND (19), O157:H7 (11) | O6:ND (1), O26:ND (97), O26:H11 (18), O45:ND (45), O55:ND (7), O63:ND (1), O75:ND (3), O91:ND (13), O103:ND (12), O103:H2 (2), O111:ND (60), O113:ND (3), O113:H4 (1), O121:ND (14), O128:ND (23), O128:H2 (8), O145:ND (20), O145:H28 (3), O146:ND (3), O146:H21 (1), O157:ND (7), O157:H7 (9) | O26:ND (82), O26:H11 (111), O45:ND (3), O55:ND (53), O76:ND (1), O91:ND (37), O103:ND (13), O103:H2 (9), O104:ND (3), O111:ND (148), O111:H8 (12), O113:ND (3), O113:H4 (1), O113:H21 (1), O117:ND (16), O121:ND (31), O128:ND (52), O128:H2 (32), O145:ND (5), O146:ND (24), O146:H21 (10), O157:ND (54), O157:H7 (80), O166:H28 (21) | 2014–2023 |
Sudan | O26:H11 (3), O111:H8 (2), O157:H7 (5) | - | - | 2023 |
Tunisia | - | O45:ND (3), O103:ND (13), O145:ND (14), O157:H7 (10) | O26:ND (9), O45:ND (2), O91:ND (2), O103:ND (20), O121:ND (2), O145:ND (14), O157:ND (23) | 2022–2024 |
Namibia | - | O103:ND (5), O145:ND (5), O157:H7 (10) | O26:ND (5), O45:ND (5), O103:ND (1), O111:ND (2), O121:ND (1), O145:ND (1), O157:ND (15) | 2016–2020 |
South Africa | - | O2:ND (1), O3:ND (97), O3:H21 (94), O4:ND (1), O5:ND (3), O5:H19(3), O6:ND (15),O7:ND (1), O8:ND (42), O10:ND (3), O16:ND (1), O22:ND (3), O26:ND (157), O26:H11 (19),O43:ND (75), O43:H2 (73), O45:ND (37), O49:ND (1), O54:ND (2), O64:ND (1), O71:ND (3), O75:ND (37), O75:H8 (37), O76:ND (52), O76:H19 (50), O79:ND (1), O102:ND (1), O103:ND (101), O103:H2 (1), O103:H8 (98), O107:H7 (3), O108:ND (13), O111:ND (2), O111:H8 (8), O113:ND (8), O117:ND (7), O121:ND (10), O125:ND (1), O132:ND (1), O145:ND (23), O145:H8 (4), O146:ND (31), O146:H21 (31), O157:ND (44), O157:H7 (44), O159:ND (2), O162:ND (1), O163:ND (2), O168:ND (1), O174:ND (16), O175:ND (3), O176:ND (5), O185:ND (4) | - | 2015–2022 |
China | O5:ND (2), O8:ND (1), O21:H25 (1), O26:H11 (5), O43:H2 (1), O84:ND (1), O91:ND (1), O112:ND (4), O157:H7 (2), O178:ND (1) | O2:ND (11), O5:ND (1), O5:H19 (4), O6:ND (1), O6:H10 (1), O8:ND (11), O8:H19 (4), O8:H21 (2), O8:H25 (5), O9:ND (4), O15:ND (1), O16:ND (8), O20:ND (24), O21:ND (1), O21:H25 (2), O22:H8 (12), O22:H16 (5), O44:ND (1), O48:H21 (1), O66:ND (2), O74:ND (2), O76:ND (1), O76:H19 (4), O81:ND (2), O84:ND (23), O86:ND (3), O87:ND (5), O93:ND (52), O100:ND (8), O100:H19 (3), O104:ND (1), O108:ND (4), O112:ND (1), O113:H4 (1), O114:ND (1), O116:ND (7), O128:H2 (1), O129:ND (1), O130:ND (1), O133:ND (11), O140:ND (1), O142:ND (1), O143:ND (3), O157:H7 (50), O159:ND (4), O172:ND (3), O174:ND (13), O177:ND (8), O184:H19 (17) | O5:ND (1), O5:H9 (1), O5:H19 (1), O8:ND (2), O8:H9 (3), O8:H19 (3), O8:H30 (2), O12:ND (2), O20:H21 (1), O21:H25 (2), O22:ND (2), O26:H11 (1), O40:H8 (2), O45:ND (5), O57:H21 (1), O76:H19 (2), O76:H21 (1), O84:ND (1), O91:ND (1), O91:H4 (4), O96:H19 (1), O98:ND (4), O100:H19 (3), O103:H25 (2), O104:H7 (3), O110:ND (2), O111:ND (1), O112:ND (2), O113:H4 (5), O113:H7 (1), O116:H21 (1), O118:ND (1), O120:ND (2), O121:ND (1), O128:H2 (10), O141:H29 (2), O145:ND (1), O150:ND (2), O157:ND (53), O157:H7 (76), O161:H19 (1), O172:ND (1), O174:ND (1), O176:H4 (5) | 2014–2023 |
Malaysia | - | O130:H26 (1), O139:H1 (5), O157:H7 (32), O168:H21 (1) | - | 2013–2015 |
South Korea | O26:H21 (1), O91:H14 (13), O103:H2 (1), O121:H19 (1) | O8:H19 (3), O8:H21 (1), O26:ND (3), O104:ND (1), O111:ND (1), O157:ND (5) | O1:ND (2), O6:ND (1), O18:ND (1), | 2014–2024 |
Thailand | - | O157:H7 (1) | - | 2022 |
Bangladesh | - | O43:H2 (3), O57:ND (40), O76:H19 (6), O87:H16 (3), O110:H16 (1), O152:H8 (2) | O157:ND (7) | 2015–2023 |
India | O28:ND (1), O59:ND (2), O64:ND (1), O69:ND (1), O85:ND (2), O95:ND (1), O102:ND (1), O103:ND (1), O157:H7 (1), O168:ND (1) | O2:ND (9), O3:ND (1), O4:ND (2), O5:ND (9), O7:ND (7), O8:ND (8), O9:ND (19), O10:ND (1), O11:ND (12), O12:ND (1), O17:ND (1), | O2:ND (1), O5:ND (2), O7:ND (7), | 2014–2023 |
Iran | O26:ND (2), O45:ND (1), O121:ND (1), O157:ND (2), O157:H7 (1) | O5:ND (16), O5:H19 (3), O26:ND (29), | O26:ND (25), O26:H11 (1), O45:ND (9), O91:ND (3), O103:ND (6), O111:ND (8), O113:ND (5), O121:ND (7), O121:H7(1), O128:ND (7), O128:H2 (1), O145:ND(5), O157:ND (34) | 2014–2023 |
Pakistan | - | - | O9:H9 (2), O9:H30 (2), O82:H4 (3), | 2017–2024 |
Iraq | - | - | O157:H7 (9) | 2019–2023 |
Israel | O26:H11 (6), O71:H8 (1), O157:H7 (1) | O171:H21 (1), O171:H25 (1), O171:H29 (1) | - | 2017 |
Saudi Arabia | - | - | O22:H8 (6), O111:ND (20), O113:H21 (12), O157:H7 (30) | 2015 |
Turkey | O26:ND (4), O26:H6 (1), O26:H12 (1), O45:H2 (1), O103:H2 (2), O104:ND (7), O111:ND (1), O145:ND (3), O157:H7 (3), O174:H21 (2), O181:H4 (1) | O26:ND (1), O45:ND (1), O121:ND (22), | O21:ND (2), O21:H25 (2), O45:ND (3), O103:ND (2), O111:ND (11), O145:ND (10), O157:ND (6), O157:H7 (3) | 2016–2023 |
United Arab Emirates | - | O157:H7 (5) | - | 2020 |
Costa Rica | O25:H4 (1), O71:H11 (2), O103:H2 (2), O111:H8 (3), O118:ND (7), O119:H2 (2), O137:H4 (1), O145:H28 (1), O151:H2 (7), O174:H21 (2) | - | - | 2024 |
Mexico | - | O3:ND (1), O8:H7 (2), O8:H8 (2), O9:H19 (5), O15:ND (1), O39:H21 (1), O48:ND (3), | - | 2016–2023 |
Argentina | - | O1:H21 (1), O113:H21 (1), O130:ND (1), | O8:H16 (4), O8:H19 (2), O22:H8 (3), | 2017–2023 |
Brazil | O8:H19 (1), O24:H4 (1), O26:H11 (1), O71:H8 (1), O91:H14 (1), O100:ND (1), O103:ND (1), O111:ND (3), O111:H8 (2), O111:H11 (1), O118:H16 (1), | O104:ND (2), O113:H2 (2), O157:H7 (5) | O8:H21 (1), O21:H19 (1), O22:H16 (1), O26:ND (3), O73:H45 (1), O79:H7 (3), O83:H19 (1), O113:H21 (3), O117:H7 (1), O132:H21 (1) | 2018–2023 |
Uruguay | - | O8:H16 (2), O8:H19 (2), O20:H7 (1), O22:H8 (5), O74:H42 (1), O88:H25 (1), O99:H19 (1), O113:H21 (1), O116:H49 (1), O120:H7 (1), O156:H10 (2), O157:H7 (1), O159:H28 (1), O171:H2 (1), O174:H21 (2), O174:H28 (3), O178:H19 (2), O185:H25 (1) | - | 2023 |
1 Countries were classified as developing based on the World Economic Situation and Prospects 2023 report by the United Nations (
Data on the distribution of Shiga toxin-coding genes stx1, stx2, and intimin-coding gene eae in Shiga toxin-producing Escherichia coli (STEC) gathered from online databases covering humans, animals, and foods in developing countries from 2014 to 2024.
Source Country 1 | Shiga toxin/Intimin | Year | Author | ||
---|---|---|---|---|---|
Humans | Animals 2 | Foods 3 | |||
Ethiopia | stx1 (29), stx2 (28), stx1+stx2 (30)/eae (42) | stx1 (40), stx2 (113), stx1+stx2 (30)/eae (156) | stx1 (3), stx2 (15), stx1+stx2 (5)/eae (13) | 2017–2023 | [ |
Kenya | stx2 (6), stx1+stx2 (13)/eae (9) | - | - | 2018 | [ |
South Sudan | stx2 (5), stx1+stx2 (5) | - | - | 2023 | [ |
Tanzania | - | stx2 (5), stx1+stx2 (2)/eae (4) | - | 2014 | [ |
Benin | - | stx1 (2)/eae (2) | stx1 (12), stx2 (104)/eae (1) | 2016–2020 | [ |
Burkina Faso | - | stx1 (2), stx2 (2), stx1+stx2 (1)/eae (1) | stx2 (6)/eae (3) | 2016–2017 | [ |
Nigeria | stx1 (101), stx2 (88), stx1+stx2 (71)/eae (78) | stx1 (249), stx2 (232), stx1+stx2 (17)/eae (14) | stx1 (257), stx2 (166), stx1+stx2 (69)/eae (139) | 2014–2023 | [ |
Senegal | - | stx1+stx2 (7)/eae (8) | stx1+stx2 (4)/eae (2) | 2023 | [ |
Algeria | - | stx1 (168), stx2 (22), stx1+stx2 (7)/eae (68) | stx1 (7), stx2 (21), stx1+stx2 (6)/eae (18) | 2014–2020 | [ |
Egypt | stx1 (97), stx2 (75), stx1+stx2 (41)/eae (169) | stx1 (45), stx2 (63), stx1+stx2 (52)/eae (93) | stx1 (225), stx2 (205), stx1+stx2 (236)/eae (308) | 2014–2023 | [ |
Sudan | stx2 (5), stx1+stx2 (5) | - | - | 2023 | [ |
Tunisia | - | stx1 (16), stx2 (13), stx1+stx2 (11), eae (8) | stx1 (61), stx2 (17), stx1+stx2 (1), eae (28) | 2022–2024 | [ |
Cameroon | - | - | stx1 (4), stx2 (4), stx1+stx2 (4), eae (6) | 2017 | [ |
Namibia | - | - | stx1 (73), stx2 (2), stx1+stx2 (10), eae (84) | 2016–2020 | [ |
South Africa | - | stx1 (223), stx2 (384), stx1+stx2 (380), eae (181) | - | 2015–2022 | [ |
Zambia | - | stx1 (4), stx2 (15), stx1+stx2 (22) | - | 2016 | [ |
Zimbabwe | - | - | stx2 (7), eae (1) | 2020 | [ |
China | stx1 (6), stx2 (3), stx1+stx2 (5), eae (11) | stx1 (215), stx2 (485), stx1+stx2 (97), eae (91) | stx1 (47), stx2 (165), stx1+stx2 (85), eae (11) | 2014–2023 | [ |
Indonesia | - | stx2 (1) | stx1 (1) | 2016 | [ |
Malaysia | - | stx1 (1), stx2 (32), stx1+stx2 (1), eae (32) | - | 2013–2015 | [ |
South Korea | stx1 (14), stx2 (20), stx1+stx2 (22), eae (3) | stx1 (17), stx2 (87), stx1+stx2 (52) | stx1 (18), stx2 (8), stx1+stx2 (9), eae (3) | 2014–2024 | [ |
Thailand | - | stx2 (1), eae (1) | - | 2022 | [ |
Vietnam | - | stx2 (50) | - | 2019 | [ |
Bangladesh | - | stx1 (25), stx2 (58), stx1+stx2 (15)/eae (6) | stx1 (1), stx2 (11) | 2015–2023 | [ |
India | stx1 (26), stx2 (12), stx1+stx2 (9)/eae (5) | stx1 (236), stx2 (224), stx1+stx2 (230)/eae (63) | stx1 (101), stx2 (88), stx1+stx2 (71)/eae (78) | 2014–2023 | [ |
Iran | stx1 (66), stx2 (80), stx1+stx2 (18)/eae (33) | stx1 (115), stx2 (132), stx1+stx2 (50)/eae (127) | stx1 (101), stx2 (23), stx1+stx2 (12)/eae (67) | 2014–2024 | [ |
Pakistan | - | - | stx1 (144), stx2 (13), stx1+stx2 (25)/eae (9) | 2017–2024 | [ |
Iraq | stx1 (13), stx2 (18)/eae (33) | stx1 (13), stx2 (17), stx1+stx2 (62)/eae (27) | stx1 (12), stx2 (15), stx1+stx2 (2)/eae (6) | 2019–2023 | [ |
Israel | stx2 (6), stx1+stx2 (3) | stx2 (2), stx1+stx2 (1) | - | 2017 | [ |
Saudi Arabia | - | - | stx1 (1), stx2 (74), stx1+stx2 (8)/eae (51) | 2015 | [ |
Turkey | stx1 (10), stx2 (19), stx1+stx2 (4)/eae (14) | stx1 (181), stx2 (123), stx1+stx2 (84)/eae (61) | stx1 (13), stx2 (14), stx1+stx2 (13)/eae (29) | 2016–2023 | [ |
United Arab Emirates | - | stx2 (12), eae (8) | - | 2020 | [ |
Trinidad and Tobago | - | stx1 (9), stx2 (10), stx1+stx2 (4)/eae (1) | - | 2016 | [ |
Costa Rica | stx1 (23), stx2 (4), stx1+stx2 (1)/eae (22) | - | - | 2024 | [ |
Guatemala | stx1 (23), stx2 (19)/eae (18) | - | - | 2022 | [ |
Mexico | - | stx1 (42), stx2 (46), stx1+stx2 (25)/eae (4) | - | 2016–2023 | [ |
Argentina | - | stx1 (5), stx2 (50), stx1+stx2 (17)/eae (1) | stx1 (1), stx2 (20), stx1+stx2 (3) | 2017–2023 | [ |
Brazil | stx1 (19), stx2 (6), stx1+stx2 (5)/eae (20) | stx1 (207), stx2 (38), stx1+stx2 (54) | stx1 (1), stx2 (12), stx1+stx2 (5)/eae (1) | 2018–2023 | [ |
Uruguay | - | stx1 (6), stx2 (17), stx1+stx2 (16)/eae (2) | - | 2023 | [ |
Total | stx1 (427), stx2 (394), stx1+stx2 (232)/eae (457) | stx1 (1821), stx2 (2234), stx1+stx2 (1237)/eae (959) | stx1 (1083), stx2 (990), stx1+stx2 (568)/eae (858) | 2014–2024 | - |
1 Countries for which there were no data in the surveyed databases (PubMed, Google Scholar, Web of Science) were excluded from this table (accessed in October 2024). 2 Cattle, Sheep, Goats, Pigs, and Pigeons. 3 Meat, Milk, and Vegetables.
Data on the frequency of stx gene subtypes in Shiga toxin-producing Escherichia coli (STEC) strains retrieved from online databases, focusing on humans, animals, and foods in developing countries from 2014 to 2024.
Source Country 1 | Shiga toxin subtypes | Year | ||
---|---|---|---|---|
Humans | Animals 2 | Foods 3 | ||
Ethiopia | stx2a (1), stx2c (3) | stx2a (6), stx2c (53) | stx2a (2), stx2c (4) | 2017–2023 |
Tanzania | - | stx2c (4) | - | 2014 |
Egypt | stx1a (1) | stx2a (4), stx2b (1), stx2c (4), stx2d (2), stx2e (1) | - | 2014–2023 |
South Africa | - | stx2c (10), stx2d (10) | - | 2015–2022 |
China | stx1a (3), stx1c (3), stx2d (1), stx2e (1) | stx1a (79), stx1c (133), stx2a (4), stx2b (13), stx2c (23), stx2e (216), stx2g (13), stx2k (170) | stx1a (12), stx1c (13), stx1d (1), stx2a (5), stx2b (2), stx2c (31), stx2d (1), stx2e (26), stx2k (3) | 2014–2023 |
Malaysia | - | stx1a (1), stx2c (32) | - | 2013–2015 |
South Korea | stx1a (2), stx2a (1) | - | stx2c (2), stx2e (2) | 2014–2024 |
Vietnam | - | stx2e (50) | - | 2019 |
Bangladesh | - | stx2d (1) | stx2d (1) | 2015–2023 |
Iran | stx1a (6), stx1d (1) | - | - | 2014–2024 |
Israel | stx2a (5) | stx2c (1), stx2d (1) | - | 2017 |
Turkey | stx1a (4), stx2a (1) | stx1a (4), stx2a (2), stx2b (9), stx2c (11), stx2d (6), stx2e (2), stx2f (12), stx2h (3), stx2i (3), stx2j (2) | stx2a (2) | 2016–2023 |
Costa Rica | stx1a (23), stx2a (4) | - | - | 2024 |
Mexico | - | stx1b (9), stx1c (26), stx1d (1) | - | 2016–2023 |
Argentina | - | stx1a (4), stx2a (24) | - | 2017–2023 |
Brazil | stx1a (18), stx1d (1), stx2c (3), stx2d (2), | - | - | 2018–2023 |
Uruguay | - | stx1a (2), stx1d (4), stx2a (4), stx2c (7), | - | 2023 |
Total | stx1a (57), stx1c (3), stx1d (2), stx2a (12), stx2c (6), stx2d (3), stx2e (2) | stx1a (90), stx1b (9), stx1c (159), stx1d (5), stx2a (44), stx2b (23), stx2c (145), stx2d (24), stx2e (269), stx2f (12), stx2g (13), stx2h (3), stx2i (3), stx2j (2), stx2k (170) | stx1a (12), stx1c (13), stx1d (1), stx2a (9), stx2b (2), stx2c (37), stx2d (2), stx2e (28), stx2k (3) | 2014–2024 |
1 Countries for which there were no data in the surveyed databases (PubMed, Google Scholar, Web of Science) were excluded from this table (accessed in October 2024). 2 Cattle, Sheep, Goats, Pigs, and Pigeons. 3 Meat, Milk, and Vegetables.
The main reported serogroup (O), serotype (O:H), Shiga toxin (Stx), and stx gene subtype of humans, animals, and foods STEC strains in developing countries based on region, from 2014 to 2024.
Region 1 | Serogroup, Serotype, Shiga Toxin | No. Papers 4 | ||
---|---|---|---|---|
Humans | Animals 2 | Foods 3 | ||
East Africa | O157, O26:H11, stx1+stx2, stx2c | O157, O157:H7, stx2, stx2c | O157, O157:H7, stx2, stx2c | 19 |
West Africa | O157, stx1 | O26, O157:H7, stx1 | O157, O157:H7, stx2 | 32 |
North Africa | O111, O26:H11, stx1, stx1a | O26, O157:H7, stx1, stx2a, stx2c | O111, O26:H11, stx1 | 77 |
Central Africa | - | - | stx1, stx2, stx1+stx2 | 1 |
Southern Africa | - | O26, O103:H8, stx1+stx2, stx2c, stx2d | O157, stx1 | 9 |
East Asia | O112, O91:H14, stx1+stx2, stx1a | O93, O157:H7, stx2, stx2e | O157, O157:H7, stx2, stx2c | 28 |
South Asia | O26, O59, O85, O157, O157:H7, stx1, stx2, stx1a | O57, O76:H19, stx2, stx2d | O157, O82:H4, stx1, stx2d | 46 |
Western Asia | O104, O26:H11, stx2, stx2a | O121, O157:H7, stx1, stx2c, stx2f | O111, O157:H7, stx2, stx2a | 24 |
Caribbean | - | stx2 | - | 1 |
Mexico and Central America | O118, O151:H2, stx1, stx1a | O75, O157:H7, stx2, stx1c | - | 5 |
South America | O111, O123, O111:H8, stx1, stx1a | O104, O175:H19, O178:H19, stx1, stx2a | O26, O113:H21, stx2 | 8 |
1 Regions were classified by the United Nations (UN) in the World Economic Situation and Prospects 2023 report (
1. Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin–Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis.; 2014; 11, pp. 447-455. [DOI: https://dx.doi.org/10.1089/fpd.2013.1704] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24750096]
2. Devleesschauwer, B.; Pires, S.M.; Young, I.; Gill, A.; Majowicz, S.E. Associating sporadic, foodborne illness caused by Shiga toxin-producing Escherichia coli with specific foods: A systematic review and meta-analysis of case-control studies. Epidemiol. Infect.; 2019; 147, e235. [DOI: https://dx.doi.org/10.1017/S0950268819001183] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31364553]
3. European Centre for Disease Prevention and Control. Annual epidemiological report for 2022. STEC Infection; ECDC: Stockholm, Sweden, 2024; Volume 11, Available online: https://www.ecdc.europa.eu/sites/default/files/documents/STEC_AER_2022_Report.pdf (accessed on 1 March 2025).
4. Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol.; 2004; 2, pp. 123-140. [DOI: https://dx.doi.org/10.1038/nrmicro818]
5. Alhadlaq, M.A.; Aljurayyad, O.I.; Almansour, A.; Al-Akeel, S.I.; Alzahrani, K.O.; Alsalman, S.A.; Yahya, R.; Al-Hindi, R.R.; Hakami, M.A.; Alshahrani, S.D.
6. Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr.; 2014; 2, pp. 10-1128. [DOI: https://dx.doi.org/10.1128/microbiolspec.EHEC-0024-2013]
7. Wang, X.; Yu, D.; Chui, L.; Zhou, T.; Feng, Y.; Cao, Y.; Zhi, S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms; 2024; 12, 687. [DOI: https://dx.doi.org/10.3390/microorganisms12040687]
8. McMahon, T.; Clarke, S.; Deschênes, M.; Tapp, K.; Blais, B.; Gill, A. Real-time PCR primers and probes for the detection of Shiga toxin genes, including novel subtypes. Int. J. Food Microbiol.; 2024; 419, 110744. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2024.110744]
9. Lee, K.; Iguchi, A.; Uda, K.; Matsumura, S.; Miyairi, I.; Ishikura, K.; Ohnishi, M.; Seto, J.; Ishikawa, K.; Konishi, N.
10. Tatsuno, I.; Horie, M.; Abe, H.; Miki, T.; Makino, K.; Shinagawa, H.; Taguchi, H.; Kamiya, S.; Hayashi, T.; Sasakawa, C. toxB Gene on pO157 of Enterohemorrhagic Escherichia coli O157:H7 Is Required for Full Epithelial Cell Adherence Phenotype. Infect. Immun.; 2001; 69, pp. 6660-6669. [DOI: https://dx.doi.org/10.1128/IAI.69.11.6660-6669.2001]
11. Yang, X.; Sun, H.; Fan, R.; Fu, S.; Zhang, J.; Matussek, A.; Xiong, Y.; Bai, X. Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci. Rep.; 2020; 10, 3275. [DOI: https://dx.doi.org/10.1038/s41598-020-60225-w]
12. Wang, L.; Bai, X.; Ylinen, E.; Zhang, J.; Saxén, H.; Matussek, A. Genetic Characterization of Intimin Gene (eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland. Toxins; 2023; 15, 669. [DOI: https://dx.doi.org/10.3390/toxins15120669] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38133173]
13. Elliott, S.J.; Sperandio, V.; Girón, J.A.; Shin, S.; Mellies, J.L.; Wainwright, L.; Hutcheson, S.W.; McDaniel, T.K.; Kaper, J.B. The Locus of Enterocyte Effacement (LEE)-Encoded Regulator Controls Expression of Both LEE- and Non-LEE-Encoded Virulence Factors in Enteropathogenic and Enterohemorrhagic Escherichia coli. Infect. Immun.; 2000; 68, pp. 6115-6126. [DOI: https://dx.doi.org/10.1128/IAI.68.11.6115-6126.2000] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11035714]
14. Gigliucci, F.; van Hoek, A.H.A.M.; Chiani, P.; Knijn, A.; Minelli, F.; Scavia, G.; Franz, E.; Morabito, S.; Michelacci, V. Genomic Characterization of hlyF-positive Shiga Toxin–Producing Escherichia coli, Italy and the Netherlands, 2000–2019. Emerg. Infect. Dis.; 2021; 27, pp. 853-861. [DOI: https://dx.doi.org/10.3201/eid2703.203110]
15. Kalalah, A.A.; Koenig, S.S.K.; Bono, J.L.; Bosilevac, J.M.; Eppinger, M. Pathogenomes and virulence profiles of representative big six non-O157 serogroup Shiga toxin-producing Escherichia coli. Front. Microbiol.; 2024; 15, 1364026. [DOI: https://dx.doi.org/10.3389/fmicb.2024.1364026] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38562479]
16. Elder, J.R.; Fratamico, P.M.; Liu, Y.; Needleman, D.S.; Bagi, L.; Tebbs, R.; Allred, A.; Siddavatam, P.; Suren, H.; Gujjula, K.R.
17. Gelalcha, B.D.; Brown, S.M.; Crocker, H.E.; Agga, G.E.; Kerro Dego, O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog. Dis.; 2022; 19, pp. 598-612. [DOI: https://dx.doi.org/10.1089/fpd.2021.0103]
18. Kolodziejek, A.M.; Minnich, S.A.; Hovde, C.J. Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr. Opin. Infect. Dis.; 2022; 35, pp. 205-214. [DOI: https://dx.doi.org/10.1097/QCO.0000000000000834]
19. Hua, Y.; Bai, X.; Zhang, J.; Jernberg, C.; Chromek, M.; Hansson, S.; Frykman, A.; Yang, X.; Xiong, Y.; Wan, C.
20. Gamage, S.D.; Patton, A.K.; Strasser, J.E.; Chalk, C.L.; Weiss, A.A. Commensal Bacteria Influence Escherichia coli O157:H7 Persistence and Shiga Toxin Production in the Mouse Intestine. Infect. Immun.; 2006; 74, pp. 1977-1983. [DOI: https://dx.doi.org/10.1128/IAI.74.3.1977-1983.2006]
21. Figler, H.M.; Dudley, E.G. The interplay of Escherichia coli O157:H7 and commensal E. coli: The importance of strain-level identification. Expert Rev. Gastroenterol. Hepatol.; 2016; 10, pp. 415-417. [DOI: https://dx.doi.org/10.1586/17474124.2016.1155449]
22. Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature; 2016; 535, pp. 85-93. [DOI: https://dx.doi.org/10.1038/nature18849] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27383983]
23. Richter, T.K.S.; Michalski, J.M.; Zanetti, L.; Tennant, S.M.; Chen, W.H.; Rasko, D.A. Responses of the Human Gut Escherichia coli Population to Pathogen and Antibiotic Disturbances. mSystems; 2018; 3, pp. 10-1128. [DOI: https://dx.doi.org/10.1128/msystems.00047-18] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30057943]
24. Wong, C.S.; Jelacic, S.; Habeeb, R.L.; Watkins, S.L.; Tarr, P.I. The Risk of the Hemolytic–Uremic Syndrome after Antibiotic Treatment of Escherichia coli O157:H7 Infections. N. Engl. J. Med.; 2000; 342, pp. 1930-1936. [DOI: https://dx.doi.org/10.1056/NEJM200006293422601]
25. Dundas, S.; Todd, W.T.A.; Stewart, A.I.; Murdoch, P.S.; Chaudhuri, A.K.R.; Hutchinson, S.J. The Central Scotland Escherichia coli O157:H7 Outbreak: Risk Factors for the Hemolytic Uremic Syndrome and Death among Hospitalized Patients. Clin. Infect. Dis.; 2001; 33, pp. 923-931. [DOI: https://dx.doi.org/10.1086/322598] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11528561]
26. Gould, L.H.; Demma, L.; Jones, T.F.; Hurd, S.; Vugia, D.J.; Smith, K.; Shiferaw, B.; Segler, S.; Palmer, A.; Zansky, S.
27. Barnett Foster, D. Modulation of the enterohemorrhagic E. coli virulence program through the human gastrointestinal tract. Virulence; 2013; 4, pp. 315-323. [DOI: https://dx.doi.org/10.4161/viru.24318]
28. Patil, S.; Lopes, B.S.; Liu, S.; Wen, F. Emergence of Shiga toxin-producing Escherichia coli O157:H7 in paediatric patients in Shenzhen, China. Lancet Microbe; 2022; 3, e809. [DOI: https://dx.doi.org/10.1016/S2666-5247(22)00223-3]
29. Hedberg, C. Foodborne Illness Acquired in the United States (Response). Emerg. Infect. Dis.; 2011; 17, 1338. [DOI: https://dx.doi.org/10.3201/eid1707.110019]
30. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol.; 2009; 62, pp. 1006-1012. [DOI: https://dx.doi.org/10.1016/j.jclinepi.2009.06.005]
31. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.
32. Atnafie, B.; Paulos, D.; Abera, M.; Tefera, G.; Hailu, D.; Kasaye, S.; Amenu, K. Occurrence of Escherichia coli O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa, Ethiopia. BMC Microbiol.; 2017; 17, 24. [DOI: https://dx.doi.org/10.1186/s12866-017-0938-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28122502]
33. Abreham, S.; Teklu, A.; Cox, E.; Sisay Tessema, T. Escherichia coli O157:H7: Distribution, molecular characterization, antimicrobial resistance patterns and source of contamination of sheep and goat carcasses at an export abattoir, Mojdo, Ethiopia. BMC Microbiol.; 2019; 19, 215. [DOI: https://dx.doi.org/10.1186/s12866-019-1590-8]
34. Belete, M.A.; Demlie, T.B.; Chekole, W.S.; Sisay Tessema, T. Molecular identification of diarrheagenic Escherichia coli pathotypes and their antibiotic resistance patterns among diarrheic children and in contact calves in Bahir Dar city, Northwest Ethiopia. PLoS ONE; 2022; 17, e0275229. [DOI: https://dx.doi.org/10.1371/journal.pone.0275229]
35. Abegaz, F.H.; Tesema, T.S.; Genet, S. A Cross Sectional Study on Molecular Prevalence of Virulent Genes of Calves Diarrheagenic Escherichia coli and Bacterial Resistance Profile to Antimicrobials in Selected Towns of South Wollo Administrative Zone, Amhara, Ethiopia. Res. Sq.; 2022; preprint [DOI: https://dx.doi.org/10.21203/rs.3.rs-1561752/v1]
36. Chekole, W.S.; Adamu, H.; Sternberg-Lewrein, S.; Magnusson, U.; Tessema, T.S. Occurrence of Escherichia coli Pathotypes in Diarrheic Calves in a Low-Income Setting. Pathogens; 2022; 12, 42. [DOI: https://dx.doi.org/10.3390/pathogens12010042]
37. Fikadu, Y.; Kabeta, T.; Diba, D.; Waktole, H. Antimicrobial Profiles and Conventional PCR Assay of Shiga Toxigenic Escherichia coli O157:H7 (STEC) Isolated from Cattle Slaughtered at Bedele Municipal Abattoir, South West Ethiopia. Infect. Drug Resist.; 2023; 16, pp. 521-530. [DOI: https://dx.doi.org/10.2147/IDR.S388102] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36721631]
38. Abey, S.L.; Teka, M.; Bitew, A.B.; Molla, W.; Ejo, M.; Dagnaw, G.G.; Adugna, T.; Nigatu, S.; Mengistu, B.A.; Kinde, M.Z.
39. Gutema, F.D.; De Zutter, L.; Piérard, D.; Hinckel, B.; Imamura, H.; Rasschaert, G.; Abdi, R.D.; Agga, G.E.; Crombé, F. Core Genome Sequencing Analysis of E. coli O157:H7 Unravelling Genetic Relatedness among Strains from Cattle, Beef, and Humans in Bishoftu, Ethiopia. Microbiol. Res.; 2023; 14, pp. 148-160. [DOI: https://dx.doi.org/10.3390/microbiolres14010013]
40. Endale, A.; Muktar, Y.; Tessema, T.S. Molecular characterization of Diarrheagenic Escherichia coli strains Isolated from Dairy Calves in North Shoa Zone, Oromiya Region, Ethiopia. Res. Sq.; 2020; preprint [DOI: https://dx.doi.org/10.21203/rs.3.rs-50805/v1]
41. Gutema, F.D.; Rasschaert, G.; Agga, G.E.; Jufare, A.; Duguma, A.B.; Abdi, R.D.; Duchateau, L.; Crombe, F.; Gabriël, S.; De Zutter, L. Occurrence, Molecular Characteristics, and Antimicrobial Resistance of Escherichia coli O157 in Cattle, Beef, and Humans in Bishoftu Town, Central Ethiopia. Foodborne Pathog. Dis.; 2021; 18, pp. 1-7. [DOI: https://dx.doi.org/10.1089/fpd.2020.2830] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32865441]
42. Gutema, F.D.; Abdi, R.D.; Agga, G.E.; Firew, S.; Rasschaert, G.; Mattheus, W.; Crombe, F.; Duchateau, L.; Gabriël, S.; De Zutter, L. Assessment of beef carcass contamination with Salmonella and E. coli O 157 in slaughterhouses in Bishoftu, Ethiopia. Int. J. Food Contam.; 2021; 8, 3. [DOI: https://dx.doi.org/10.1186/s40550-021-00082-1]
43. Ayenew, H.Y.; Mitiku, B.A.; Tesema, T.S. Occurrence of Virulence Genes and Antimicrobial Resistance of E. coli O157:H7 Isolated from the Beef Carcass of Bahir Dar City, Ethiopia. Vet. Med. Int.; 2021; 2021, 8046680. [DOI: https://dx.doi.org/10.1155/2021/8046680]
44. Sciences, H.; Anbessa, T.; Hospital, S.; Ababa, A. Pathogenic Escherichia coli strains and their antibiotic susceptibility profiles in cases of child diarrhea at Addis Ababa University, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. Res. Sq.; 2022; preprint [DOI: https://dx.doi.org/10.21203/rs.3.rs-2370163/v1]
45. Wolde, A.; Deneke, Y.; Sisay, T.; Mathewos, M. Molecular Characterization and Antimicrobial Resistance of Pathogenic Escherichia coli Strains in Children from Wolaita Sodo, Southern Ethiopia. J. Trop. Med.; 2022; 2022, 9166209. [DOI: https://dx.doi.org/10.1155/2022/9166209] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35846070]
46. Gemeda, S.T.; Desta, A.F.; Gari, S.R.; Jass, J.; Tefera, D.A. Diarrheagenic toxins in stool correlate to drinking water from improved water sources in Ethiopia. Environ. Chall.; 2022; 8, 100592. [DOI: https://dx.doi.org/10.1016/j.envc.2022.100592]
47. Uçkay, I.; Kressmann, B.; Di Tommaso, S.; Portela, M.; Alwan, H.; Vuagnat, H.; Maître, S.; Paoli, C.; Lipsky, B.A. A randomized controlled trial of the safety and efficacy of a topical gentamicin–collagen sponge in diabetic patients with a mild foot ulcer infection. SAGE Open Med.; 2018; 6, 2050312118773950. [DOI: https://dx.doi.org/10.1177/2050312118773950] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29785265]
48. Abd, H.; Musa, A. Molecular Detection and charchterization of stx toxins of Escherichia coli O157:H7, Escherichia coli O26:H8, and Escherichia coli O111:H8 from diarrhoeic patients in Khartoum State, Sudan. Res. Sq.; 2023; preprint [DOI: https://dx.doi.org/10.21203/rs.3.rs-2773768/v1]
49. Lupindu, A.M.; Olsen, J.E.; Ngowi, H.A.; Msoffe, P.L.M.; Mtambo, M.M.; Scheutz, F.; Dalsgaard, A. Occurrence and Characterization of Shiga Toxin-Producing Escherichia coli O157:H7 and Other Non-Sorbitol–Fermenting E. coli in Cattle and Humans in Urban Areas of Morogoro, Tanzania. Vector-Borne Zoonotic Dis.; 2014; 14, pp. 503-510. [DOI: https://dx.doi.org/10.1089/vbz.2013.1502]
50. Moussé, W.; Baba-Moussa, F.; Adjanohoun, A.; Noumavo, P.A.; Sina, H.; Assogba, S.; Baba-Moussa, L. Virulence profiles of pathogenic Escherichia coli strains isolated from street foods in Bénin. Int. J. Biotechnol. Food Sci.; 2016; 4, pp. 52-64.
51. Arikè Salifou, C.F.; Boko, C.; Houaga, I.; Agossa, R.; Ogbankotan, I.; Adèle Ahokpossi, C.A.G.; Mehoba, B.A.; Konsaka, B.M.; Ahounou, S.G.; Abdou Karim, I.Y. Prevalence of shiga toxin-producing Escherichia coli O157, O26 and O111 in milk, meat and faeces of cattle, sheep and pigs slaughtered in Benin. J. Appl. Biosci.; 2020; 152, pp. 15667-15675. [DOI: https://dx.doi.org/10.35759/JABs.152.6]
52. Ibrahim, H.B.; Tchamba, G.B.; Bagré, T.S.; Bouda, S.C.; Fody, A.M.; Kagambèga, A.; Bonkoungou, I.J.O.; Tiendrebéogo, F.; Zongo, C.; Savadogo, A.
53. Bako, E.; Kagambèga, A.; Traore, K.; Bagre, T.; Ibrahim, H.; Bouda, S.; Bonkoungou, I.; Kaboré, S.; Zongo, C.; Traore, A.
54. Tafida, S.Y.; Kwaga, J.K.P.; Bello, M.; Kabir, J.; Umoh, V.J.; Yakubu, S.E.; Nok, A.J. Occurrence of Escherichia coli O157 in retailed-beef and related meat products in Zaria, Nigeria. Food Nutr. Sci.; 2014; 05, pp. 481-487. [DOI: https://dx.doi.org/10.4236/fns.2014.56057]
55. Olowe, O.A.; Aboderin, B.; Idris, Y.; Opaleye, O.; Adekunle, C.; Olowe, A.; Akinniyi, A.; Ojurongbe, O.; Mabayoje, O. Genotypes and phenotypes of Shiga toxin-producing Escherichia coli (STEC) in Abeokuta, Southwestern Nigeria. Infect. Drug Resist.; 2014; 7, 253. [DOI: https://dx.doi.org/10.2147/IDR.S66268]
56. Enabulele, S.; Daniel, E. Shiga toxin (STX) gene analysis and verotoxigenic potentials of Escherichia coli isolated from ‘bobozi’-an indigenous Nigerian ready to eat fermented cassava chip. Int. J. Biol. Res.; 2016; 4, pp. 177-180. [DOI: https://dx.doi.org/10.14419/ijbr.v4i2.6543]
57. Ifeanyi, C.I.C.; Ikeneche, N.F.; Bassey, B.E.; Morabito, S.; Graziani, C.; Caprioli, A. Molecular and phenotypic typing of enteropathogenic Escherichia coli isolated in childhood acute diarrhea in Abuja, Nigeria. J. Infect. Dev. Ctries.; 2017; 11, pp. 527-535. [DOI: https://dx.doi.org/10.3855/jidc.9338] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31071061]
58. Asamole-Osuocha, C.; Nwankiti, O.; Nwosuh, C.; Chukwuedo, A.; Ikeh, E. Search for Escherichia coli O157:H7 and Other Enterohaemorrhagic Escherichia coli in Diarrhoeal Cases in Abuja, Nigeria. Br. J. Med. Med. Res.; 2017; 19, pp. 1-12. [DOI: https://dx.doi.org/10.9734/BJMMR/2017/30184] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/39632968]
59. Adamu, M.S.; Ugochukwu, I.C.I.; Idoko, S.I.; Kwabugge, Y.A.; Abubakar, N.S.; Ameh, J.A. Virulent gene profile and antibiotic susceptibility pattern of Shiga toxin-producing Escherichia coli (STEC) from cattle and camels in Maiduguri, North-Eastern Nigeria. Trop. Anim. Health Prod.; 2018; 50, pp. 1327-1341. [DOI: https://dx.doi.org/10.1007/s11250-018-1565-z]
60. Enem, S.I.; Oboegbulem, S.I. Seroprevalence Analysis of O157 and Non O157 VTEC Serotypes in Diarrhoeic and Non-Diar-rhoeic Sick Hospital Attendees in Abuja, Federal Capital Territory (FCT). EC Vet. Sci.; 2019; 4, pp. 66-71.
61. Nehoya, K.N.; Hamatui, N.; Shilangale, R.P.; Onywera, H.; Kennedy, J.; Mwapagha, L.M. Characterization of Shiga toxin-producing Escherichia coli in raw beef from informal and commercial abattoirs. PLoS ONE; 2020; 15, e0243828. [DOI: https://dx.doi.org/10.1371/journal.pone.0243828]
62. Okechukwu, E.C.; Amuta, E.U.; Gberikon, G.M.; Chima, N.; Yakubu, B.; Igwe, J.C.; Njoku, M. Molecular Identification of Virulence Genes of Escherichia coli Isolated from Cow Milk and Its Products in Abuja, Nigeria. Microbiol. Res. J. Int.; 2020; 30, pp. 11-18. [DOI: https://dx.doi.org/10.9734/mrji/2020/v30i630226]
63. Aliyu, R.M.; Abubakar, M.B.; Yakubu, Y.; Shuaibu, B. Prevalence of Escherichia coli O157:H7 in some animal products sold within Sokoto Metropolis, Nigeria. Afr. J. Bacteriol. Res.; 2021; 13, pp. 1-6.
64. Fayemi, O.E.; Akanni, G.B.; Elegbeleye, J.A.; Aboaba, O.O.; Njage, P.M. Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. Int. J. Food Microbiol.; 2021; 347, 109191. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2021.109191]
65. Ujoh, N.A.; Nwokah, E.G.; Amala, S.E.; Wachukwu, C.K. Antimicrobial Sensitivity of Shiga toxin-producing Escherichia coli (STEC) and Virulence Genes of Representative Isolates in Port Harcourt, Nigeria. J. Adv. Microbiol.; 2022; 22, pp. 40-50. [DOI: https://dx.doi.org/10.9734/jamb/2022/v22i930487]
66. Ivbade, A.; Ojo, O.E.; Dipeolu, M.A. Shiga toxin-producing Escherichia coli O157:H7 in milk and milk products in Ogun State, Nigeria. Vet. Ital.; 2014; 50, pp. 185-191. [DOI: https://dx.doi.org/10.12834/VetIt.129.2187.1]
67. Olanrewaju, J.; Onifade, A. Detection of virulence genes in Shiga toxigenic Escherichia coli isolated from diarrhoeic and non-diarrhoeic pediatric patients in Ondo State, Nigeria. Microbes Infect. Dis.; 2022; 3, pp. 998-1005. [DOI: https://dx.doi.org/10.21608/mid.2022.124583.1252]
68. Eniola, K.; Awoniyi, L.; Torimiro, N.; Ajayi, O. Prevalence of Pathotypes of Escherichia coli in Stools of HIV-Positive Adults Attending a HAART Clinic in IleIfe, Nigeria. Res. Sq.; 2023; preprint [DOI: https://dx.doi.org/10.21203/rs.3.rs-2878013/v1]
69. Akinlabi, O.C.; Dada, R.A.; Nwoko, E.S.Q.A.; Okeke, I.N. PCR diagnostics are insufficient for the detection of Diarrhoeagenic Escherichia coli in Ibadan, Nigeria. PLoS Glob. Public Health; 2023; 3, e0001539. [DOI: https://dx.doi.org/10.1371/journal.pgph.0001539]
70. Omotade, T.I.; Babalola, T.E.; Anyabolu, C.H.; Japhet, M.O. Rotavirus and bacterial diarrhoea among children in Ile-Ife, Nigeria: Burden, risk factors and seasonality. PLoS ONE; 2023; 18, e0291123. [DOI: https://dx.doi.org/10.1371/journal.pone.0291123]
71. Tula, M.Y.; Enabulele, O.I.; Ophori, E.A. Occurrence and antibiotic resistance profile of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from sources of water in Mubi Region, Adamawa State, Nigeria. Public Health Toxicol.; 2023; 3, 15. [DOI: https://dx.doi.org/10.18332/pht/172303]
72. Ogunbiyi, T.S.; Fayemi, O.E.; Akanni, G.B.; Ayolabi, C.I.; Hald, T. Molecular Characterization of Hetero-Pathogenic and Diarrheagenic Escherichia coli Pathotypes in Diarrheic Children under Five Years and Exposure Environment in Ogun State, South-West Nigeria. Pathogens; 2023; 12, 1358. [DOI: https://dx.doi.org/10.3390/pathogens12111358] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38003822]
73. Onifade, A.; Oladoja, M. Molecular Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from School Children in Ondo State, Nigeria. Br. Microbiol. Res. J.; 2015; 6, pp. 340-347. [DOI: https://dx.doi.org/10.9734/BMRJ/2015/14535]
74. Kabiru, L.; Bello, M.; Kabir, J.; Grande, L.; Morabito, S. Detection of Pathogenic Escherichia coli in Samples Collected at an Abattoir in Zaria, Nigeria and at Different Points in the Surrounding Environment. Int. J. Environ. Res. Public Health; 2015; 12, pp. 679-691. [DOI: https://dx.doi.org/10.3390/ijerph120100679]
75. Odetoyin, B.W.; Hofmann, J.; Aboderin, A.O.; Okeke, I.N. Diarrhoeagenic Escherichia coli in mother-child Pairs in Ile-Ife, South Western Nigeria. BMC Infect. Dis.; 2015; 16, 28. [DOI: https://dx.doi.org/10.1186/s12879-016-1365-x]
76. Oluyege, A.; Famurewa, O. Shiga Toxin and Non-Shiga Toxin-Producing Escherichia coli O157 from Cattle, Goats and Chickenin Ado-Ekiti, South West, Nigeria. Int. J. Trop. Dis. Health; 2015; 6, pp. 108-118. [DOI: https://dx.doi.org/10.9734/IJTDH/2015/7352]
77. Enem, S.I.; Oboegbulem, S.I.; Nafarnda, W.D.; Omeiza, G.K. Occurrence of verocytotoxigenic Escherichia coli (VTEC) in processed chicken from retail chicken markets in FCT, Abuja, Nigeria. J. Public Health Epidemiol.; 2016; 8, pp. 326-329. [DOI: https://dx.doi.org/10.5897/JPHE2016.0837]
78. Oloyede, A.R.; Afolabi, O.R.; Olalowo, O.S. Molecular Detection of Virulence Genes and Antibiotic Resistance Patterns of Escherichia coli O157:H7 Isolated from Raw Beef Sold in Abeokuta, South-West Nigeria. Niger. J. Biotechnol.; 2016; 31, 15. [DOI: https://dx.doi.org/10.4314/njb.v31i1.3]
79. Enabulele, S.A.; Nwankiti, O.O. Shiga Toxin (Stx) Gene Detection and Verotoxigenic Potentials of Non- 0157 Escherichia coli Isolated from Fermented Fresh Cow Milk (Nono) Sold in Selected Cities in Nigeria. Niger. J. Basic Appl. Sci.; 2016; 24, 98. [DOI: https://dx.doi.org/10.4314/njbas.v24i1.15]
80. Loubamba, L.; Diallo, A.A.; Musabyemariya, B.; Moyen, R.; Sylla, K.S.B.; Alambédji, R.B. Virulence genes (stx/stx/aea) and O serogroups of Escherichia coli strains isolated from the slaughtered cattle and ground meat sold in retail markets in Dakar, Senegal. J. Microb.; 2023; 1, 100024. [DOI: https://dx.doi.org/10.1016/j.microb.2023.100024]
81. Salih, B.M.; Nour-Eddine, B.; Jamal-Eddine, H.; Benabdallah, B.; Mebrouk, K. Genetic characterization of Shiga toxin-producing Escherichia coli strains isolated from frozen bovine meat in Algeria. Adv. Environ. Biol.; 2014; 8, pp. 6-13.
82. Baazize-Ammi, D.; Gassem, O.; Derrar, F.; Izri, K.; Brahim-Errahmani, M.; Gagnon, J.; Guetarni, D.; Chebloune, Y. Prevalence of Asymptomatic Carriers of Shiga Toxin-Producing Escherichia coli (STEC) in Dairy Cattle Farms in the Governorate of Blida (Algeria). Bull. Vet. Inst. Pulawy; 2015; 59, pp. 23-28. [DOI: https://dx.doi.org/10.1515/bvip-2015-0004]
83. Laarem, M.; Barguigua, A.; Nayme, K.; Akila, A.; Zerouali, K.; El Mdaghri, N.; Timinouni, M. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria. J. Infect. Dev. Ctries.; 2017; 11, pp. 143-151. [DOI: https://dx.doi.org/10.3855/jidc.8643]
84. Dib, A.L.; Agabou, A.; Chahed, A.; Kurekci, C.; Moreno, E.; Espigares, M.; Espigares, E. Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control; 2018; 88, pp. 54-60. [DOI: https://dx.doi.org/10.1016/j.foodcont.2018.01.005]
85. Ferhat, L.; Chahed, A.; China, B.; Assaous, F.; Daube, G.; Rahal, K. Research and characterization of Escherichia coli O157 strains isolated from ovine carcasses of two slaughterhouses of Algiers city. Hum. Vet. Med.; 2018; 10, pp. 46-50.
86. Ferhat, L.; Chahed, A.; Hamrouche, S.; Korichi-Ouar, M.; Hamdi, T.-M. Research and molecular characteristic of Shiga toxin-producing Escherichia coli isolated from sheep carcasses. Lett. Appl. Microbiol.; 2019; 68, pp. 546-552. [DOI: https://dx.doi.org/10.1111/lam.13142]
87. Ahmed, A.M.; Shimamoto, T. Isolation and molecular characterization of Salmonella enterica, Escherichia coli O157:H7 and Shigella spp. from meat and dairy products in Egypt. Int. J. Food Microbiol.; 2014; 168–169, pp. 57-62. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2013.10.014]
88. Merwad, A.; Gharieb, R.; Saber, T. Occurrence of shiga toxin-producing Escherichia coli in lactating cows and in contact workers in Egypt: Serotypes, virulence genes and zoonotic significance. Life Sci. J.; 2014; 11, pp. 563-571.
89. Daoud, J.; Mohamed, K.; Nasef, S.; Ahmed, R. Detection of Shiga toxin produced by Escherichia coli in poultry and meat in Luxor city using multiplex PCR. Benha Vet. Med. J.; 2016; 31, pp. 40-44. [DOI: https://dx.doi.org/10.21608/bvmj.2016.31258]
90. Ombarak, R.A.; Hinenoya, A.; Awasthi, S.P.; Iguchi, A.; Shima, A.; Elbagory, A.-R.M.; Yamasaki, S. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int. J. Food Microbiol.; 2016; 221, pp. 69-76. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2016.01.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26824810]
91. Khalil, R.K.S.; Gomaa, M.A.E. Prevalence and characterization of Shiga toxin-producing Escherichia coli (STEC) in fruits and vegetables sold at local street markets in Alexandria, Egypt. LWT; 2016; 74, pp. 199-210. [DOI: https://dx.doi.org/10.1016/j.lwt.2016.07.041]
92. Awadallah, M.A.; Ahmed, H.A.; Merwad, A.M.; Selim, M.A. Occurrence, genotyping, shiga toxin genes and associated risk factors of E. coli isolated from dairy farms, handlers and milk consumers. Vet. J.; 2016; 217, pp. 83-88. [DOI: https://dx.doi.org/10.1016/j.tvjl.2016.09.014]
93. Baruah, S.; Borah, P.; Sharma, R.K. Prevalence of shiga toxin producing Escherichia coli (STEC) in animals and man. Indian Vet. J.; 2011; 88, pp. 9-10.
94. Saqr, S.; Khaliel, R.; Ibrahim, M. Antibiotic resistance and virulence genes of E. coli isolated from fresh Nile Tilapia (Oreochromis Niloticus) in El-Behera Governorate, Egypt. Alex. J. Vet. Sci.; 2016; 48, 83. [DOI: https://dx.doi.org/10.5455/ajvs.205169]
95. Fadel, H.M.; Afifi, R.; Al-Qabili, D.M. Characterization and zoonotic impact of Shiga toxin producing Escherichia coli in some wild bird species. Vet. World; 2017; 10, pp. 1118-1128. [DOI: https://dx.doi.org/10.14202/vetworld.2017.1118-1128]
96. El-Tawab, A.; Ashraf, A.; Agag, M.A. Bacteriological and molecular studies on Shiga-Toxin producing Escherichia coli causing cattle clinical mastitis. Benha Vet. Med. J.; 2017; 33, pp. 17-26. [DOI: https://dx.doi.org/10.21608/bvmj.2017.29984]
97. Abdela, W. Characterization of Diarrheagenic Escherichia coli Serotypes Isolated from Poultry and Humans. SOJ Vet. Sci.; 2017; 3, pp. 1-8. [DOI: https://dx.doi.org/10.15226/2381-2907/3/1/00122]
98. Ahmed, H.; MacLeod, E.; El Bayomi, R.; Mohsen, R.; Nassar, A. Molecular Characterization of Escherichia coli O157:H7 and non-O157 Shiga Toxin Producing E. coli from Retail Meat and Humans. Zagazig Vet. J.; 2017; 45, pp. 250-261. [DOI: https://dx.doi.org/10.21608/zvjz.2017.7950]
99. Mohammed, M.A.; Sallam, K.I.; Eldaly, E.A.Z.; Ahdy, A.M.; Tamura, T. Occurrence, serotypes and virulence genes of non-O157 Shiga toxin-producing Escherichia coli in fresh beef, ground beef, and beef burger. Food Control; 2014; 37, pp. 182-187. [DOI: https://dx.doi.org/10.1016/j.foodcont.2013.09.035]
100. Hamed, O.M.; Sabry, M.A.; Hassanain, N.A.; Hamza, E.; Hegazi, A.G.; Salman, M.B. Occurrence of virulent and antibiotic-resistant Shiga toxin-producing Escherichia coli in some food products and human stool in Egypt. Vet. World; 2017; 10, pp. 1233-1240. [DOI: https://dx.doi.org/10.14202/vetworld.2017.1233-1240]
101. Younis, G.A.; Elkenany, R.M.; Fouda, M.A.; Mostafa, N.F. Virulence and extended-spectrum β-lactamase encoding genes in Escherichia coli recovered from chicken meat intended for hospitalized human consumption. Vet. World; 2017; 10, pp. 1281-1285. [DOI: https://dx.doi.org/10.14202/vetworld.2017.1281-1285] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29184377]
102. Khaled, R.; Amer, A.; ElAnsary, M. Microbial Criteria for Evaluation of Locally Manufactured Mozzarella Cheese. Alex. J. Vet. Sci.; 2018; 59, 119. [DOI: https://dx.doi.org/10.5455/ajvs.302642864]
103. Aref, N.-E.M.; Abdel-Raheem, A.-R.A.; Kamaly, H.F.; Hussien, S.Z. Clinical and sero-molecular characterization of Escherichia coli with an emphasis on hybrid strain in healthy and diarrheic neonatal calves in Egypt. Open Vet. J.; 2018; 8, 351. [DOI: https://dx.doi.org/10.4314/ovj.v8i4.1]
104. Saad, S.M.; Salem, A.M.; Nada, S. Hygienic Considerations of Pathogenic Escherichia coli Contamination on Cattle Carcass Surfaces in Egypt. Benha Vet. Med. J.; 2018; 34, pp. 305-313. [DOI: https://dx.doi.org/10.21608/bvmj.2018.54255]
105. El-Zamkan, M.; Hameed, K. Molecular Characterization of Non-O157 Shiga Toxin-producing E. coli Detected in Raw Milk and Some Dairy Products. Microbiol. Res. J. Int.; 2018; 23, pp. 1-14. [DOI: https://dx.doi.org/10.9734/MRJI/2018/40434]
106. Shokr, N.; Mahmoud, A.; Ibrahim, M. Detection of E. coli in Nile Tilapia from retail in Gharbiya Governorate. Alex. J. Vet. Sci.; 2018; 59, 76. [DOI: https://dx.doi.org/10.5455/ajvs.11769]
107. Hussein, M.A.; Merwad, A.M.A.; Elabbasy, M.T.; Suelam, I.I.A.; Abdelwahab, A.M.; Taha, M.A. Prevalence of Enterotoxigenic Staphylococcus aureus and Shiga Toxin Producing Escherichia coli in Fish in Egypt: Quality Parameters and Public Health Hazard. Vector-Borne Zoonotic Dis.; 2019; 19, pp. 255-264. [DOI: https://dx.doi.org/10.1089/vbz.2018.2346] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30222525]
108. Elmonir, W.; Abo-Remela, E.; Sobeih, A. Public health risks of Escherichia coli and Staphylococcus aureus in raw bovine milk sold in informal markets in Egypt. J. Infect. Dev. Ctries.; 2018; 12, pp. 533-541. [DOI: https://dx.doi.org/10.3855/jidc.9509]
109. Kalule, J.B.; Keddy, K.H.; Nicol, M.P. Characterisation of STEC and other diarrheic E. coli isolated on CHROMagarTM STEC at a tertiary referral hospital, Cape Town. BMC Microbiol.; 2018; 18, 55. [DOI: https://dx.doi.org/10.1186/s12866-018-1195-7]
110. Awadallah, M.A.I.; Ahmed, H.A.; Merwad, A.M. Prevalence of Non-O157 Shiga Toxin-Producing Escherichia coli and Enterotoxigenic Staphylococci in Ready-to-eat Meat Products, Handlers and Consumers in Cairo, Egypt. Glob. Vet.; 2014; 12, pp. 692-699.
111. Abd Elraheam Elsayed, M.S. Virulence Repertoire and Antimicrobial Resistance Profile of Shiga Toxin-Producing E. coli Isolated from Sheep and Goat Farms from Al-buhayra Egypt. Pak. Vet. J.; 2018; 38, pp. 429-433. [DOI: https://dx.doi.org/10.29261/pakvetj/2018.082]
112. Bagoury, A.; Shelaby, H.; Saied, H. Incidence of Escherichia coli and Salmonella Species with Special Reference to Antibiotic Resistant Pathogenic E. coli Isolated from Locally Produced Cheeses in Egypt. Alex. J. Vet. Sci.; 2019; 60, 93. [DOI: https://dx.doi.org/10.5455/ajvs.21944]
113. Ombarak, R.A.; Zayda, M.G.; Awasthi, S.P.; Hinenoya, A.; Yamasaki, S. Serotypes, Pathogenic Potential, and Antimicrobial Resistance of Escherichia coli Isolated from Subclinical Bovine Mastitis Milk Samples in Egypt. Jpn. J. Infect. Dis.; 2019; 72, pp. 337-339. [DOI: https://dx.doi.org/10.7883/yoken.JJID.2018.538] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31061360]
114. Mahmoud, A.E.M.; El-demerdash, G.O.; Roby, M.H.H.; Mohamed, S.R. Molecular and serotyping characterization of non-Shiga toxigenic Escherichia coli associated with food collected from the local market in fayoum governorate, Egypt. Fayoum J. Agric. Res. Dev.; 2019; 33, pp. 114-129. [DOI: https://dx.doi.org/10.21608/fjard.2019.190240]
115. Ibrahim, E.M.A.; Elbarbary, H.A.; Shawky, N.A.; El-Sebay, I. Incidence and molecular characterization of Escherichia coli in some dairy products. Benha Vet. Med. J.; 2019; 37, pp. 102-106. [DOI: https://dx.doi.org/10.21608/bvmj.2020.20327.1136]
116. Elafify, M.; Khalifa, H.O.; Al-Ashmawy, M.; Elsherbini, M.; El Latif, A.A.; Okanda, T.; Matsumoto, T.; Koseki, S.; Abdelkhalek, A. Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt. J. Environ. Sci. Health Part B; 2020; 55, pp. 265-272. [DOI: https://dx.doi.org/10.1080/03601234.2019.1686312]
117. Karama, M.; Mainga, A.O.; Cenci-Goga, B.T.; Malahlela, M.; El-Ashram, S.; Kalake, A. Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa. Sci. Rep.; 2019; 9, 11930. [DOI: https://dx.doi.org/10.1038/s41598-019-47948-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31417098]
118. Younis, R.; Nasef, S.; Salem, W. Detection of Multi-Drug Resistant Food-borne Bacteria in Ready-to-Eat Meat Products in Luxor City, Egypt. SVU-Int. J. Vet. Sci.; 2019; 2, pp. 20-35. [DOI: https://dx.doi.org/10.21608/svu.2019.23168]
119. Menshawy, A.M.S.; Abed, A.H. Escherichia coli Neonatal Calf Diarrhea in Middle Egypt: Prevalence, Phenotypes, Genotypes and Pathotypes. World J. Vet. Sci.; 2019; 7, pp. 14-23. [DOI: https://dx.doi.org/10.12970/2310-0796.2019.07.04]
120. Gwida, M.; Awad, A.; El-Ashker, M.; Hotzel, H.; Monecke, S.; Ehricht, R.; Müller, E.; Reißig, A.; Barth, S.A.; Berens, C.
121. Askora, A.; Merwad, A.; Gharieb, R.M.; Maysa, A.I.A. A lytic bacteriophage as a biocontrol for some enteropathogenic and enterohemorrhagic Escherichia coli strains of zoonotic risk in Egypt. Rev. Med. Vet.; 2015; 166, pp. 76-83.
122. Elsayed, M.S.A.E.; Eldsouky, S.M.; Roshdy, T.; Bayoume, A.M.A.; Nasr, G.M.; Salama, A.S.A.; Akl, B.A.; Hasan, A.S.; Shahat, A.K.; Khashaba, R.A.
123. Abd El Gany, S.; Mahmoud Gad, G.; Mousa, S.; Ibrahem, R. Characterization of verotoxigenic E. coli and enteropathogenic E. coli isolated from infants with diarrhea in combination with antimicrobial resistance pattern in Minia, Egypt. J. Adv. Biomed. Pharm. Sci.; 2020; 3, pp. 101-109. [DOI: https://dx.doi.org/10.21608/jabps.2020.24153.1070]
124. Algammal, A.M.; El-Kholy, A.; Riad, E.M.; Mohamed, H.E.; Elhaig, M.M.; Yousef, S.A.A.; Hozzein, W.N.; Ghobashy, M.O.I. Genes Encoding the Virulence and the Antimicrobial Resistance in Enterotoxigenic and Shiga-toxigenic E. coli Isolated from Diarrheic Calves. Toxins; 2020; 12, 383. [DOI: https://dx.doi.org/10.3390/toxins12060383]
125. Sobhy, N.M.; Yousef, S.G.A.; Aboubakr, H.A.; Nisar, M.; Nagaraja, K.V.; Mor, S.K.; Valeris-Chacin, R.J.; Goyal, S.M. Virulence factors and antibiograms of Escherichia coli isolated from diarrheic calves of Egyptian cattle and water buffaloes. PLoS ONE; 2020; 15, e0232890. [DOI: https://dx.doi.org/10.1371/journal.pone.0232890]
126. Babolhavaeji, K.; Shokoohizadeh, L.; Yavari, M.; Moradi, A.; Alikhani, M.Y. Prevalence of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 Serogroups Isolated from Fresh Raw Beef Meat Samples in an Industrial Slaughterhouse. Int. J. Microbiol.; 2021; 2021, 1978952. [DOI: https://dx.doi.org/10.1155/2021/1978952]
127. Abd Ellatif, S.; Elbadry, S.; Nada, H.; Reda, L.; Tahoun, A. Occurrence of multidrug resistant shiga-toxigenic E. coli in retailed cheese in Zagazig city, Egypt. Benha Vet. Med. J.; 2021; 40, pp. 67-71. [DOI: https://dx.doi.org/10.21608/bvmj.2021.74798.1404]
128. Elabbasy, M.T.; Hussein, M.A.; Algahtani, F.D.; Abd El-Rahman, G.I.; Morshdy, A.E.; Elkafrawy, I.A.; Adeboye, A.A. MALDI-TOF MS Based Typing for Rapid Screening of Multiple Antibiotic Resistance E. coli and Virulent Non-O157 Shiga Toxin-Producing E. coli Isolated from the Slaughterhouse Settings and Beef Carcasses. Foods; 2021; 10, 820. [DOI: https://dx.doi.org/10.3390/foods10040820]
129. El-Shaer, M.; Ibrahim, M.; Ahmed, W.; El-Amin, A. Evaluation of the Hygienic Status of Some Fish Types. Egypt. J. Anim. Health; 2021; 1, pp. 11-19. [DOI: https://dx.doi.org/10.21608/ejah.2021.160756]
130. Diab, M.S.; Tarabees, R.; Elnaker, Y.F.; Hadad, G.A.; Saad, M.A.; Galbat, S.A.; Albogami, S.; Hassan, A.M.; Dawood, M.A.O.; Shaaban, S.I. Molecular Detection, Serotyping, and Antibiotic Resistance of Shiga Toxigenic Escherichia coli Isolated from She-Camels and In-Contact Humans in Egypt. Antibiotics; 2021; 10, 1021. [DOI: https://dx.doi.org/10.3390/antibiotics10081021]
131. Gwida, M.; EL Mahmoudy, S.; Elgohary, A.; Mohamed, A.; Hassan, H. Characterization of Shiga toxin-producing Escherichia coli isolated from cattle and their contacts. Mansoura Vet. Med. J.; 2021; 22, pp. 13-19. [DOI: https://dx.doi.org/10.21608/mvmj.2021.57994.1026]
132. Khalil, R.K.S.; Gomaa, M.A.E.; Khalil, M.I.M. Detection of shiga-toxin producing E. coli (STEC) in leafy greens sold at local retail markets in Alexandria, Egypt. Int. J. Food Microbiol.; 2015; 197, pp. 58-64. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2014.12.019] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25557184]
133. Elmonir, W.; Shalaan, S.; Tahoun, A.; Mahmoud, S.F.; Remela, E.M.A.; Eissa, R.; El-Sharkawy, H.; Shukry, M.; Zahran, R.N. Prevalence, antimicrobial resistance, and genotyping of Shiga toxin-producing Escherichia coli in foods of cattle origin, diarrheic cattle, and diarrheic humans in Egypt. Gut Pathog.; 2021; 13, 8. [DOI: https://dx.doi.org/10.1186/s13099-021-00402-y]
134. Mokhtar, A.; Karmi, M. Surveillance of Food Poisoning Escherichia coli (STEC) in Ready-to-Eat Meat Products in Aswan, Egypt. Egypt. J. Vet. Sci.; 2021; 52, pp. 41-50. [DOI: https://dx.doi.org/10.21608/ejvs.2021.94025.1277]
135. Sayed, H. Detection and characterization of Escherichia coli associated Oreochromis niloticus sold in the retail markets at Sohag Governorate, Egypt. SVU-Int. J. Vet. Sci.; 2021; 4, pp. 33-42. [DOI: https://dx.doi.org/10.21608/svu.2021.96552.1150]
136. Abdelmonem, M.A.; Kelany, M.A.; Fawzy, M.; Sheta, R.; Ageez, A.; Abd El-Moez, S.I. Detection of SHIGA-TOXIN producing E. coli in some retail markets in Egypt using qPCR assay with special reference to serotyping. Adv. Environ. Biol.; 2022; 16, pp. 1-12. [DOI: https://dx.doi.org/10.22587/aeb.2022.16.1.1]
137. Amin, M.A.; Hashem, H.R.; El-Mahallawy, H.S.; Abdelrahman, A.A.; Zaki, H.M.; Azab, M.M. Characterization of enterohemorrhagic Escherichia coli from diarrhoeic patients with particular reference to production of Shiga-like toxin. Microb. Pathog.; 2022; 166, 105538. [DOI: https://dx.doi.org/10.1016/j.micpath.2022.105538] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35436562]
138. El-Khabaz, K.A.S.; Elshrief, L.M.T.; Elmeligy, E. Genetic Assessment of Shiga Toxin and Antibiotic Resistance of E. coli Isolated from Milk of Cows infected with Sub-clinical Mastitis. J. Adv. Vet. Res.; 2022; 12, pp. 278-282.
139. Elafify, M.; Sadoma, N.M.; Abd El Aal, S.F.; Bayoumi, M.A.; Ahmed Ismail, T. Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products. Animals; 2022; 12, 922. [DOI: https://dx.doi.org/10.3390/ani12070922] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35405910]
140. Ahmed, A.S.; Diab, H.M.; Alkahtani, M.A.; Alshehri, M.A.; Saber, H.; Badr, H.; Dandrawy, M.K.; El-Mansi, A.A.; Shati, A.A.; Ahmed, A.E. Molecular epidemiology of virulent E. coli among rural small scale dairy herds and shops: Efficacy of selected marine algal extracts and disinfectants. Int. J. Environ. Health Res.; 2022; 32, pp. 72-94. [DOI: https://dx.doi.org/10.1080/09603123.2020.1727422]
141. Al Qabili, D.M.A.; Aboueisha, A.-K.M.; Ibrahim, G.A.; Youssef, A.I.; El-Mahallawy, H.S. Virulence and antimicrobial-resistance of shiga toxin-producing E. coli (STEC) Isolated from edible shellfish and its public health significance. Arch. Microbiol.; 2022; 204, 510. [DOI: https://dx.doi.org/10.1007/s00203-022-03114-2]
142. Mokhbatly, A.A.A.; Elsheikh, N.; Ghazy, E.W.; Elgamal, A.M.; Hegazy, Y.M.; Assar, D.H. Prevalence of Shiga toxin-producing Escherichia coli and Salmonellae and some associated hematologic and biochemical profile alterations in lambs. Proceedings of the Veterinary Research Forum; Urmia, Iran, 15 June 2022; Volume 13, pp. 155-162.
143. Kamel, M.; El-Hassan, D.G.A.; El-Sayed, A. Epidemiological studies on Escherichia coli O157:H7 in Egyptian sheep. Trop. Anim. Health Prod.; 2015; 47, pp. 1161-1167. [DOI: https://dx.doi.org/10.1007/s11250-015-0843-2]
144. Farag, A.M.; Karmi, M.; Mubarak, A.G.; Younis, W.; Youseef, A.G. Isolation and Characterization of non-O157 Shiga Toxin-Producing Escherichia coli in Aswan Governorate with a Zoonotic Approach. J. Adv. Vet. Res.; 2023; 13, pp. 886-894.
145. Alnakip, M.E.A.; Youssef, M.Z.; Abd-Elaala, S.F.; Bayoumi, M.A. Screening of Food-borne Staphylococcus aureus and E. coli Pathogens in Artisanal White Soft Cheese in Delta Region, Egypt. J. Adv. Vet. Res.; 2023; 13, pp. 1203-1209.
146. Abd El-Fattah, O.; Kotb, E.; Ibrahim, H.; El Gohary, A.; Mohammed, A. Detection and Molecular Characterization of Some Virulence Genes of Escherichia coli Isolated from Milk in Dairy Cow Farms. J. Appl. Vet. Sci.; 2023; 8, pp. 1-9. [DOI: https://dx.doi.org/10.21608/javs.2023.173140.1190]
147. Mansour, A.M.; Shehab, S.A.; Nossair, M.A.; Ayyad, A.S.; Tawfik, R.G.; El-Lami, S.A.D.; Eskander, M. Molecular Characterization of Shiga Toxin-producing Escherichia coli Isolated from Some Food Products as well as Human Stool in Alexandria, Egypt. J. Adv. Vet. Res.; 2023; 13, pp. 1056-1062.
148. Ibrahim, Y.; Sallam, K.; Zaher, H.; Elgazar, M. Shigatoxin producing Escherichia coli in camel meat marketed in Behaira Governorate, Egypt. Mansoura Vet. Med. J.; 2022; 24, pp. 35-41. [DOI: https://dx.doi.org/10.21608/mvmj.2022.160381.1120]
149. Bahgat, O.; Rizk, D.; Kenawy, H.; Barwa, R. Prevalence of E. coli Pathotypes: A Comparative Study between Clinical and Environmental Isolates. Egypt. J. Med. Microbiol.; 2023; 32, pp. 59-69. [DOI: https://dx.doi.org/10.21608/ejmm.2023.304581]
150. Al Qabili, D.; Aboueisha, A.; Youssef, A.; El-Mahallawy, H. Antimicrobial Resistance and Virulence Genes of Shiga Toxin-producing Escherichia coli (STEC) Isolated from Tilapia and Mullet and its Public Health Significance. Suez Canal Vet. Med. J. SCVMJ; 2023; 28, pp. 55-72. [DOI: https://dx.doi.org/10.21608/scvmj.2023.307333]
151. Ma, J.-K.; Alsayeqh, A.F.; El-Ghareeb, W.R.; Elhelaly, A.E.; Seliem, M.M.; Darwish, W.S.; Eissa Abdallah, K.M. SQUAB and QUAIL MEATS: MICROBIAL STATUS and PREVALENCE of MULTIDRUG-RESISTANT SHIGA TOXIN-PRODUCING E. coli. Slov. Vet. Res.; 2023; 60, pp. 317-326. [DOI: https://dx.doi.org/10.26873/SVR-1613-2022]
152. Hasona, I.F.; Helmy, S.M.; El Gamal, A.M. Prevalence, virulence factors, and antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli isolated from broiler chickens in Egypt. Proceedings of the Veterinary Research Forum; Urmia, Iran, 15 March 2023; Volume 14, pp. 131-138.
153. ElGamal, A.; MS, A.; Salem, N.; Ebied, N. Isolation and Molecular Characterization of Shiga Toxin-Producing Escherichia coli in Beef Retail Markets. Alex. J. Vet. Sci.; 2016; 48, 50. [DOI: https://dx.doi.org/10.5455/ajvs.205072]
154. Ramadan, H.; Awad, A.; Ateya, A. Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt. J. Infect. Dev. Ctries.; 2016; 10, pp. 584-591. [DOI: https://dx.doi.org/10.3855/jidc.7762]
155. Tarabees, R.; Elsify, A.M.; Mahboub, H.D.; Elbalal, S.S. Multi-Drug Resistant Aerobic Bacteria Associated with Pneumo-Enteritis in Small Ruminants in Three Egyptian Provinces a field Study. Alex. J. Vet. Sci.; 2016; 51, 37. [DOI: https://dx.doi.org/10.5455/ajvs.237167]
156. Jouini, A.; Klibi, A.; Kmiha, S.; Hamrouni, S.; Ghram, A.; Maaroufi, A. Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Pathogens; 2022; 11, 948. [DOI: https://dx.doi.org/10.3390/pathogens11080948]
157. Tayh, G.; Boubaker, S.M.; Khedher, R.B.; Jbeli, M.; Chehida, F.B.; Mamlouk, A.; Dâaloul-Jedidi, M.; Messadi, L. Prevalence, virulence genes, and antimicrobial profiles of Escherichia coli O157:H7 isolated from healthy cattle in Tunisia. J. Infect. Dev. Ctries.; 2022; 16, pp. 1308-1316. [DOI: https://dx.doi.org/10.3855/jidc.15855]
158. Tayh, G.; Boubaker, S.M.; Khedher, R.B.; Jbeli, M.; Dâaloul-Jedidi, M.; Messadi, L. Prevalence, characterization and antimicrobial resistance of non-O157 Shiga toxin-producing Escherichia coli isolates from healthy cattle in Tunisia. Acta Vet. Hung.; 2023; 71, pp. 71-81. [DOI: https://dx.doi.org/10.1556/004.2023.00904]
159. Tayh, G.; Nsibi, F.; Chemli, K.; Daâloul-Jedidi, M.; Abbes, O.; Messadi, L. Occurrence, antibiotic resistance and molecular characterisation of Shiga toxin-producing Escherichia coli isolated from broiler chickens in Tunisia. Br. Poult. Sci.; 2024; 65, pp. 751-761. [DOI: https://dx.doi.org/10.1080/00071668.2024.2368906] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/38967914]
160. Tchatchouang, C.-D.K. Molecular Characterization of Virulence Determinants in Escherichia coli Pathotypes Isolated from Abattoirs. Ph.D. Thesis; North-West University: Mahikeng, South Africa, 2017.
161. Madzingira, O. Shiga toxin-producing E. coli isolated from sheep in Namibia. J. Infect. Dev. Ctries.; 2016; 10, pp. 400-403. [DOI: https://dx.doi.org/10.3855/jidc.6903] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27131003]
162. Iwu, C.J.; Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Occurrence of non-O157 Shiga toxin-producing Escherichia coli in two commercial swine farms in the Eastern Cape Province, South Africa. Comp. Immunol. Microbiol. Infect. Dis.; 2016; 44, pp. 48-53. [DOI: https://dx.doi.org/10.1016/j.cimid.2015.12.004]
163. Mainga, A.O.; Cenci-Goga, B.T.; Malahlela, M.N.; Tshuma, T.; Kalake, A.; Karama, M. Occurrence and characterization of seven major Shiga toxin-producing Escherichia coli serotypes from healthy cattle on cow–calf operations in South Africa. Zoonoses Public Health; 2018; 65, pp. 777-789. [DOI: https://dx.doi.org/10.1111/zph.12491]
164. Karama, M.; Cenci-Goga, B.T.; Malahlela, M.; Smith, A.M.; Keddy, K.H.; El-Ashram, S.; Kabiru, L.M.; Kalake, A. Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Humans in South Africa: 2006–2013. Toxins; 2019; 11, 424. [DOI: https://dx.doi.org/10.3390/toxins11070424] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31331115]
165. Onyeka, L.O.; Adesiyun, A.A.; Keddy, K.H.; Manqele, A.; Madoroba, E.; Thompson, P.N. Prevalence, risk factors and molecular characteristics of Shiga toxin-producing Escherichia coli in beef abattoirs in Gauteng, South Africa. Food Control; 2021; 123, 107746. [DOI: https://dx.doi.org/10.1016/j.foodcont.2020.107746]
166. Malahlela, M.N.; Cenci-Goga, B.T.; Marufu, M.C.; Fonkui, T.Y.; Grispoldi, L.; Etter, E.; Kalake, A.; Karama, M. Occurrence, Serotypes and Virulence Characteristics of Shiga-Toxin-Producing Escherichia coli Isolates from Goats on Communal Rangeland in South Africa. Toxins; 2022; 14, 353. [DOI: https://dx.doi.org/10.3390/toxins14050353]
167. Mainda, G.; Lupolova, N.; Sikakwa, L.; Bessell, P.R.; Muma, J.B.; Hoyle, D.V.; McAteer, S.P.; Gibbs, K.; Williams, N.J.; Sheppard, S.K.
168. Gweshe, W.M.; Muteveri, T.; Gufe, C.; Marumure, J.; Hodobo, T.C. Antimicrobial-resistant Shiga-toxin producing Escherichia coli Isolated from Ready-to-Eat Meat Products and Fermented Milk Sold in the Formal and Informal Sectors in Harare, Zimbabwe. J. Pure Appl. Microbiol.; 2020; 14, pp. 1157-1165. [DOI: https://dx.doi.org/10.22207/JPAM.14.2.11]
169. Yang, G.-Y.; Guo, L.; Su, J.-H.; Zhu, Y.-H.; Jiao, L.-G.; Wang, J.-F. Frequency of Diarrheagenic Virulence Genes and Characteristics in Escherichia coli Isolates from Pigs with Diarrhea in China. Microorganisms; 2019; 7, 308. [DOI: https://dx.doi.org/10.3390/microorganisms7090308]
170. Meng, Q.; Bai, X.; Zhao, A.; Lan, R.; Du, H.; Wang, T.; Shi, C.; Yuan, X.; Bai, X.; Ji, S.
171. Yang, X.; Liu, Q.; Bai, X.; Hu, B.; Jiang, D.; Jiao, H.; Lu, L.; Fan, R.; Hou, P.; Matussek, A.
172. Liu, Y.; Li, H.; Chen, X.; Tong, P.; Zhang, Y.; Zhu, M.; Su, Z.; Yao, G.; Li, G.; Cai, W. Characterization of Shiga toxin-producing Escherichia coli isolated from Cattle and Sheep in Xinjiang province, China, using whole-genome sequencing. Transbound. Emerg. Dis.; 2022; 69, pp. 413-422. [DOI: https://dx.doi.org/10.1111/tbed.13999] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33480086]
173. Hu, B.; Yang, X.; Liu, Q.; Zhang, Y.; Jiang, D.; Jiao, H.; Yang, Y.; Xiong, Y.; Bai, X.; Hou, P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr. Res. Food Sci.; 2022; 5, pp. 1596-1602. [DOI: https://dx.doi.org/10.1016/j.crfs.2022.08.021] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36161222]
174. Sui, X.; Yang, X.; Luo, M.; Wang, H.; Liu, Q.; Sun, H.; Jin, Y.; Wu, Y.; Bai, X.; Xiong, Y. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins; 2023; 15, 640. [DOI: https://dx.doi.org/10.3390/toxins15110640]
175. Zhu, W.; Guo, H.; Xu, J.; Wu, W.; Yi, Y.; Wang, J.; Duan, R.; Tong, J.; Du, Y. Enterohemorrhagic Escherichia coli O157: H7—Xuzhou City, Jiangsu Province, China, 2001–2021. China CDC Wkly.; 2023; 5, 311. [DOI: https://dx.doi.org/10.46234/ccdcw2023.057]
176. Cao, Y.; Fang, T.; Shen, J.; Zhang, G.; Guo, D.; Zhao, L.; Jiang, Y.; Zhi, S.; Zheng, L.; Lv, X.
177. Wang, S.; Zhang, S.; Liu, Z.; Liu, P.; Shi, Z.; Wei, J.; Shao, D.; Li, B.; Ma, Z. Molecular Characterization of Enterohemorrhagic E. coli O157 Isolated from Animal Fecal and Food Samples in Eastern China. Sci. World J.; 2014; 2014, 946394. [DOI: https://dx.doi.org/10.1155/2014/946394]
178. Bai, X.; Wang, H.; Xin, Y.; Wei, R.; Tang, X.; Zhao, A.; Sun, H.; Zhang, W.; Wang, Y.; Xu, Y.
179. Li, R.; Tan, X.; Xiao, J.; Wang, H.; Liu, Z.; Zhou, M.; Bi, W.; Miyamoto, T. Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control; 2016; 60, pp. 180-188. [DOI: https://dx.doi.org/10.1016/j.foodcont.2015.07.045]
180. Dong, P.; Zhu, L.; Mao, Y.; Liang, R.; Niu, L.; Zhang, Y.; Luo, X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control; 2015; 54, pp. 39-46. [DOI: https://dx.doi.org/10.1016/j.foodcont.2015.01.038]
181. Bai, L.; Guo, Y.; Lan, R.; Dong, Y.; Wang, W.; Hu, Y.; Gan, X.; Yan, S.; Fu, P.; Pei, X.
182. Liu, J.; Zhou, R.; Li, L.; Peters, B.M.; Li, B.; Lin, C.; Chuang, T.-L.; Chen, D.; Zhao, X.; Xiong, Z.
183. Khan, S.B.; Zou, G.; Xiao, R.; Cheng, Y.; Rehman, Z.U.; Ali, S.; Memon, A.M.; Fahad, S.; Ahmad, I.; Zhou, R. Prevalence, quantification and isolation of pathogenic shiga toxin Escherichia coli O157:H7 along the production and supply chain of pork around Hubei Province of China. Microb. Pathog.; 2018; 115, pp. 93-99. [DOI: https://dx.doi.org/10.1016/j.micpath.2017.12.019]
184. Ningrum, S.G.; Soejoedono, R.D.; Latif, H.; Arnafia, W.; Wibawan, I.W.T. Prevalence and Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Slaughtered Qurban Animal in Jakarta Province. Media Peternak.; 2016; 39, pp. 90-94. [DOI: https://dx.doi.org/10.5398/medpet.2016.39.2.90]
185. Ho, W.S.; Tan, L.K.; Ooi, P.T.; Yeo, C.C.; Thong, K.L. Prevalence and characterization of verotoxigenic-Escherichia coli isolates from pigs in Malaysia. BMC Vet. Res.; 2013; 9, 109. [DOI: https://dx.doi.org/10.1186/1746-6148-9-109] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23731465]
186. Perera, A.; Clarke, C.M.; Dykes, G.A.; Fegan, N. Characterization of Shiga Toxigenic Escherichia coli O157 and Non-O157 Isolates from Ruminant Feces in Malaysia. Biomed Res. Int.; 2015; 2015, 382403. [DOI: https://dx.doi.org/10.1155/2015/382403]
187. Gill, A.; McMahon, T.; Ferrato, C.; Chui, L. Survival of O157 and non-O157 shiga toxin-producing Escherichia coli in Korean style kimchi. Food Microbiol.; 2024; 121, 104526. [DOI: https://dx.doi.org/10.1016/j.fm.2024.104526]
188. Kang, E.; Hwang, S.Y.; Kwon, K.H.; Kim, K.Y.; Kim, J.H.; Park, Y.H. Prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) from cattle in Korea between 2010 and 2011. J. Vet. Sci.; 2014; 15, 369. [DOI: https://dx.doi.org/10.4142/jvs.2014.15.3.369]
189. Lee, J.B.; Han, D.; Lee, H.T.; Wi, S.M.; Park, J.H.; Jo, J.; Cho, Y.-J.; Hahn, T.-W.; Lee, S.; Kang, B.
190. Lee, J.B.; Kim, S.-K.; Wi, S.M.; Cho, Y.-J.; Hahn, T.-W.; Yu, J.; Kim, S.; Hong, S.; Kim, J.; Yoon, J.W. Molecular epidemiology of sequence type 33 of Shiga toxin-producing Escherichia coli O91:H14 isolates from human patients and retail meats in Korea. J. Vet. Sci.; 2019; 20, 87. [DOI: https://dx.doi.org/10.4142/jvs.2019.20.1.87]
191. Oh, K.-H.; Kim, S.-B.; Park, M.-S.; Cho, S.-H. Development of a One-Step PCR Assay with Nine Primer Pairs for the Detection of Five Diarrheagenic Escherichia coli Types. J. Microbiol. Biotechnol.; 2014; 24, pp. 862-868. [DOI: https://dx.doi.org/10.4014/jmb.1312.12031]
192. Cho, Y.S.; Koo, M.S.; Jang, H.J. Characterization of Diarrheagenic Escherichia coli Isolated from Fresh Beef, Pork, and Chicken Meat in Korean Markets. Microbiol. Biotechnol. Lett.; 2020; 48, pp. 121-128. [DOI: https://dx.doi.org/10.4014/mbl.1912.12005]
193. Park, H.; Yoon, J.W.; Heo, E.-J.; Ko, E.-K.; Kim, K.-Y.; Kim, Y.-J.; Yoon, H.-J.; Wee, S.-H.; Park, Y.H.; Moon, J.S. Antibiotic Resistance and Virulence Potentials of Shiga Toxin-Producing Escherichia coli Isolates from Raw Meats of Slaughterhouses and Retail Markets in Korea. J. Microbiol. Biotechnol.; 2015; 25, pp. 1460-1466. [DOI: https://dx.doi.org/10.4014/jmb.1502.02034]
194. Songsri, J.; Mala, W.; Wisessombat, S.; Siritham, K.; Cheha, S.; Noisa, N.; Wongtawan, T.; Klangbud, W.K. First isolation of verocytotoxin-producing Escherichia coli O157:H7 from sports animals in Southern Thailand. Vet. World; 2022; 15, pp. 2275-2284. [DOI: https://dx.doi.org/10.14202/vetworld.2022.2275-2284] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36341074]
195. Ly, T.L.K.; Le, T.C.L. Antimicrobial resistance of Escherichia coli causing edema disease in post-weaning pigs in Vinh Long province. CTU J. Innov. Sustain. Dev.; 2019; 11, pp. 1-8. [DOI: https://dx.doi.org/10.22144/ctu.jen.2019.017]
196. Mannan, M.S.; Rabbi, F.; Kibria, M.G.; Islam, S.; Bayzid, M.; Bupasha, Z.B.; Islam, M.Z.; Sarker, M.S.; Biswas, P.K. Prevalence of shiga toxin-producing Escherichia coli in buffaloes on smallholdings in coastal area in Bangladesh. Thai J. Vet. Med.; 2021; 51, pp. 691-696. [DOI: https://dx.doi.org/10.56808/2985-1130.3167]
197. Anjum, A. Isolation of Shiga Toxin Producing Escherichia coli 0157: H7 from Street Food and Raw Vegetables in Dhaka City. Bachelor’s Thesis; BRAC University: Dhaka, Bangladesh, 2015.
198. Proma, R.T. Isolation of Shiga Toxin Producing Escherichia coli O157:H7 from Bovine Samples of Dhaka, Bangladesh. Ph.D. Thesis; BRAC University: Dhaka, Bangladesh, 2015.
199. Shuvra, S.K. Isolation of Shiga Toxin Producing Escherichia coli 0157:H7 from Environmental and Clinical Samples in Dhaka City. J. Immunol. Allergy; 2023; 4, pp. 40-62. [DOI: https://dx.doi.org/10.37191/Mapsci-2582-6549-4(2)-045]
200. Hassan, J.; Nazir, K.; Parvej, M.; Kamal, T.; Rahman, M. Molecular based prevalence of shigatoxigenic Escherichia coli in rectal swab of apparently healthy cattle in Mymensingh district, Bangladesh. J. Adv. Vet. Anim. Res.; 2017; 4, pp. 194-199. [DOI: https://dx.doi.org/10.5455/javar.2017.d213]
201. Rahman, M.; Nabi, A.; Asadulghani, M.; Faruque, S.M.; Islam, M.A. Toxigenic properties and stx phage characterization of Escherichia coli O157 isolated from animal sources in a developing country setting. BMC Microbiol.; 2018; 18, 98. [DOI: https://dx.doi.org/10.1186/s12866-018-1235-3]
202. Johura, F.-T.; Parveen, R.; Islam, A.; Sadique, A.; Rahim, M.N.; Monira, S.; Khan, A.R.; Ahsan, S.; Ohnishi, M.; Watanabe, H.
203. Rajkhowa, S.; Sarma, D.K. Prevalence and antimicrobial resistance of porcine O157 and non-O157 Shiga toxin-producing Escherichia coli from India. Trop. Anim. Health Prod.; 2014; 46, pp. 931-937. [DOI: https://dx.doi.org/10.1007/s11250-014-0587-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24743858]
204. Kumar, A.; Taneja, N.; Sharma, R.K.; Sharma, H.; Ramamurthy, T.; Sharma, M. Molecular characterization of Shiga-toxigenic Escherichia coli isolated from diverse sources from India by multi-locus variable number tandem repeat analysis (MLVA). Epidemiol. Infect.; 2014; 142, pp. 2572-2582. [DOI: https://dx.doi.org/10.1017/S0950268814000065] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24534324]
205. Parul,; Bist, B.; Singh, S.P.; Sharma, B.; Jain, U.; Mishra, R.P.; Kumar, A. Virulence characterization and phylogenetic analysis of non-O157 vero toxin producing Escherichia coli (VTEC) isolated from cattle in India. Indian J. Biotechnol.; 2021; 20, pp. 343-354.
206. Dasgupta, A.; Kumar, D. Isolation, Identification and Characterization of Escherichia coli from Raw Meat, Fruit and Milk Samples of Local Area of Silchar, India. Indiana J. Agric. Life Sci.; 2021; 1, pp. 1-5.
207. Deep, A.; Grakh, K.; Vaishali,; Kumar, M.; Gupta, R.; Mittal, D.; Kumar, R.; Jindal, N. Molecular epidemiology, antibiogram profile and risk factor analysis of pathogenic Escherichia coli associated with pre-weaning diarrhoea in piglets from Haryana, India. J. Infect. Public Health; 2023; 16, pp. 1793-1801. [DOI: https://dx.doi.org/10.1016/j.jiph.2023.08.019]
208. Bist, B.; Sharma, B.; Kumar, A.; Singh, S.; Jain, U.; Goswami, M.; Mishra, R.P.; Basak, G. Seasonal effect on the prevalence of virulence genes of non-O157 Verotoxic E. coli serogroups in faeces of cattle calves. Indian J. Anim. Sci.; 2023; 93, pp. 1046-1052. [DOI: https://dx.doi.org/10.56093/ijans.v93i11.126780]
209. Debbarma, M.; Deka, D.; Roychoudhury, P. Enumeration, Serotypes and Virulence Genes Associated with Shigatoxigenic (STEC) and Enterotoxigenic (ETEC) Escherichia coli from Beef and Chicken of Mizoram, India. Asian J. Dairy Food Res.; 2022; 42, pp. 247-254. [DOI: https://dx.doi.org/10.18805/ajdfr.DR-1950]
210. Shah, I.H.; Hussain, S.A.; Hassan, M.N.; Rather, M.A.; Farooq, S.; Sofi, A.; Hussain, I.; Showkat, S. Subtype Analysis of Shiga Toxin-Producing Escherichia coli and Enteropathogenic Escherichia coli Isolated from Cattle and Sheep. J. Anim. Res.; 2023; 13, pp. 295-301. [DOI: https://dx.doi.org/10.30954/2277-940X.02.2023.20]
211. Begum, J.; Dutta, T.K.; Chandra, R.; Choudhary, P.R.; Varte, Z.; Bitew, M. Molecular and phenotypic characterization of shigatoxigenic Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) from piglets and infants associated with diarrhoea in Mizoram, India. Afr. J. Biotechnol.; 2014; 13, pp. 1452-1461. [DOI: https://dx.doi.org/10.5897/AJB2013.13561]
212. Venkateswara Rao, K. Studies on the incidence of Shiga toxin-producing Escherichia coli (STEC) in dairy farm animals. Master’s Thesis; Sri Venkateswara Veterinary University: Danduvaripalle, India, 2015.
213. Sethulekshmi, C.; Latha, C.; Sunil, B. Occurrence of Enterohaemorrhagic E. coli in raw meat samples in Kerala. Int. J. Adv. Res. Biol. Sci.; 2016; 3, pp. 220-222.
214. Mishra, R.P.; Jain, U.; Bist, B.; Verma, A.K.; Kumar, A. Prevalence of vero toxic Escherichia coli in fecal samples of domestic as well as wild ruminants in Mathura districts and Kanpur zoo. Vet. World; 2016; 9, pp. 71-74. [DOI: https://dx.doi.org/10.14202/vetworld.2016.71-74]
215. Nayakvadi, S.; Alemao, C.A.; Kumar, H.B.C.; Rajkumar, R.S.; Rajkumar, S.; Chakurkar, E.B.; Keelara, S. Detection and molecular characterization of sorbitol fermenting non-O157 Escherichia coli from goats. Small Rumin. Res.; 2018; 161, pp. 7-12. [DOI: https://dx.doi.org/10.1016/j.smallrumres.2018.02.008]
216. Khan, J.A.; Rathore, R.S.; Abulreesh, H.H.; Al-thubiani, A.S.; Khan, S.; Ahmad, I. Diversity of antibiotic-resistant Shiga toxin-producing Escherichia coli serogroups in foodstuffs of animal origin in northern India. J. Food Saf.; 2018; 38, e12566. [DOI: https://dx.doi.org/10.1111/jfs.12566]
217. Mishra, R.P.; Jain, U.; Sharma, B.; Yadav, J.; Vipin Singh, M.S. Studies on prevalence and hemolytic activity of verocytotoxic Escherichia coli (VTEC) isolated from sheep. J. Pharmacogn. Phytochem.; 2018; 7, pp. 73-76.
218. Shikha, D.; Bhat, M.; Taku, A.; Manhas, R.; Sharma, I.; Badroo, G.; Javid, F.; Sharma, S. Characterization of shiga-toxin producing E. coli (STEC) and Enteropathogenic E. coli (EPEC) from domestic animals for virulence and colonisation factors and their antimicrobial resistance. J. Entomol. Zool. Stud.; 2021; 9, pp. 670-677. [DOI: https://dx.doi.org/10.22271/j.ento.2021.v9.i2j.8548]
219. Tahmasby, H.; Mehrabiyan, S.; Tajbakhsh, E.; Farahmandi, S.; Monji, H.; Farahmandi, K. Molecular detection of nine clinically important non-O157 Escherichia coli serogroups from raw sheep meat in Chaharmahal-va-Bakhtiari province, Iran. Meat Sci.; 2014; 97, pp. 428-432. [DOI: https://dx.doi.org/10.1016/j.meatsci.2014.02.007]
220. Miri, A.; Rahimi, E.; Mirlohi, M.; Mahaki, B.; Jalali, M.; Safaei, H. Isolation of shiga toxin-producing Escherichia coli O157:H7/NM from hamburger and chicken nugget. Int. J. Environ. Health Eng.; 2014; 3, 20. [DOI: https://dx.doi.org/10.4103/2277-9183.138414]
221. Elzhraa, F.; Al-Ashmawy, M.; El-Sherbini, M.; Abdelkhalek, A. Critical occurrence of verotoxgenic E. coli and non-typhoidal salmonella in some heat treated dairy products. Ital. J. Food Saf.; 2021; 10, 9318. [DOI: https://dx.doi.org/10.4081/ijfs.2021.9318]
222. Moeinirad, M.; Douraghi, M.; Rahimi Foroushani, A.; Sanikhani, R.; Soltan Dallal, M.M. Molecular characterization and prevalence of virulence factor genes of Shiga toxin-producing Escherichia coli (STEC) isolated from diarrheic children. Gene Rep.; 2021; 25, 101379. [DOI: https://dx.doi.org/10.1016/j.genrep.2021.101379]
223. Aflakian, F.; Rad, M.; Salimizand, H.; Nemati, A.; Rafati Zomorodi, A. Detection of virulence genes and determination of the antimicrobial susceptibility of Escherichia coli isolates with mastitis in Mashhad, Iran—A short communication. Vet. Arh.; 2022; 92, pp. 525-530. [DOI: https://dx.doi.org/10.24099/vet.arhiv.1346]
224. Moradi, R.; Grünberg, W.; Mirshahi, A.; Askari Badouei, M.; Sharifi, K. Shiga Toxin-Producing Escherichia coli in Diarrheic Neonatal Dairy Calves: Matching Small Intestinal and Fecal Isolates in Terms of Isolation Rates and Antimicrobial Resistance. Int. J. Enteric Pathog.; 2022; 10, pp. 19-26. [DOI: https://dx.doi.org/10.34172/ijep.2022.5509]
225. Pirbonyeh, N.; Emami, A.; Javanmardi, F.; Moattari, A.; Hatam, G.R.; Bazargani, A. Serotyping and prevalence of stx gene among E. coli isolates from HIV/AIDS patients with diarrhea; Shiraz, Iran. Gene Rep.; 2022; 27, 101627. [DOI: https://dx.doi.org/10.1016/j.genrep.2022.101627]
226. Badouei, M.A.; Taban, H.; Nemati, A.; Santos, L.F. Dos Molecular serotyping of Shiga toxin-producing Escherichia coli (STEC) of animal origin in Iran reveals the presence of important non-O157 seropathotypes. Vet. Res. Forum; 2023; 14, pp. 267-274. [DOI: https://dx.doi.org/10.30466/vrf.2022.550618.3416]
227. Nemati, A.; Askari Badouei, M.; Hashemi Tabar, G.; Morabito, S.; Dadvar, A. Molecular and in silico analyses for detection of Shiga toxin-producing Escherichia coli (STEC) and highly pathogenic enterohemorrhagic Escherichia coli (EHEC) using genetic markers located on plasmid, O Island 57 and O Island 71. BMC Vet. Res.; 2024; 20, 413. [DOI: https://dx.doi.org/10.1186/s12917-024-04251-0] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/39272082]
228. Jajarmi, M.; Imani Fooladi, A.A.; Badouei, M.A.; Ahmadi, A. Virulence genes, Shiga toxin subtypes, major O-serogroups, and phylogenetic background of Shiga toxin-producing Escherichia coli strains isolated from cattle in Iran. Microb. Pathog.; 2017; 109, pp. 274-279. [DOI: https://dx.doi.org/10.1016/j.micpath.2017.05.041]
229. Jajarmi, M.; Askari Badouei, M.; Imani Fooladi, A.A.; Ghanbarpour, R.; Ahmadi, A. Pathogenic potential of Shiga toxin-producing Escherichia coli strains of caprine origin: Virulence genes, Shiga toxin subtypes, phylogenetic background and clonal relatedness. BMC Vet. Res.; 2018; 14, 97. [DOI: https://dx.doi.org/10.1186/s12917-018-1407-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29548291]
230. Askari Badouei, M.; Jajarmi, M.; Narimani, A.; Zahraei Salehi, T.; Ghanbarpour, R.; Nemati, A.; Morabito, S.; Koochakzadeh, A. Distribution and molecular analysis of Subtilase cytotoxin gene (subAB) variants in Shiga toxin-producing Escherichia coli (STEC) isolated from different sources in Iran. Vet. Ital.; 2024; 60, pp. 1-9. [DOI: https://dx.doi.org/10.12834/VetIt.3061.23280.2]
231. Askari Badouei, M.; Lotfollahzadeh, S.; Arman, M.; Haddadi, M. Prevalence and Resistance Profiles of Enteropathogenic and Shiga Toxin-Producing Escherichia coli in Diarrheic Calves in Mashhad and Garmsar Districts, Iran. Avicenna J. Clin. Microbiol. Infect.; 2014; 1, e22802. [DOI: https://dx.doi.org/10.17795/ajcmi-22802]
232. Koochakzadeh, A.; Badouei, M.A.; Mazandarani, E.; Madadgar, O. Survey on O157:H7 enterohemorrhagic Escherichia coli (EHEC) in cattle in Golestan province, Iran. Iran. J. Microbiol.; 2014; 6, pp. 276-280.
233. Kargar, M.; Homayoon, M. Prevalence of shiga toxins (stx1, stx2), eaeA and hly genes of Escherichia coli O157:H7 strains among children with acute gastroenteritis in southern of Iran. Asian Pac. J. Trop. Med.; 2015; 8, pp. 24-28. [DOI: https://dx.doi.org/10.1016/S1995-7645(14)60182-6]
234. Ranjbar, R.; Sheikhshahrokh, A.; Jonaidi Jafari, N. Shiga (vero) toxin producing Escherichia coli in various types of food stuffs; virulence factors, O-serogroups and antimicrobial resistance properties. J. Food Saf.; 2017; 37, e12312. [DOI: https://dx.doi.org/10.1111/jfs.12312]
235. Zafarane, S.; Houri, H.; Kazemian, H.; Heidari, H.; Amiri, P.; Tabarraei, B. Characterization of virulence genes, serogroups and antimicrobial susceptibility of Shiga toxin producing Escherichia coli isolated from bovine mastitic milk in Tehran, Iran. Trop. Biomed.; 2017; 34, pp. 295-304.
236. Bonyadian, M.; Moshtaghi, H.; Mohamadtaghipour, L. Antibiotic resistance of Verotoxigenic Escherichia coli isolated from vegetables. Biol. J. Microorg. 5 Th Year; 2017; 5, pp. 9-16.
237. Rajaee, M.; Emami, A.; Bazargani, A.; Pirbonyeh, N.; Moattari, A. Identification of serotypes and virulence markers (stx) of Escherichia coli isolated from patients with diarrhea in Shiraz, Iran. Gene Rep.; 2017; 6, pp. 49-53. [DOI: https://dx.doi.org/10.1016/j.genrep.2016.12.005]
238. Fard, R.; Dallal, M.; Moradi, R.; Rajabi, Z. Molecular Pathotyping of Escherichia coli Isolates and Detection of Residual Antibiotics in Raw Cow Milk in Iran. Alex. J. Vet. Sci.; 2019; 60, 79. [DOI: https://dx.doi.org/10.5455/ajvs.16457]
239. Nayak, P.; Kachroo, M. a Comparative Group-Qsar and Molecular Docking Studies of 4-Thiazolidinone Containing Indolin-2-One Moiety as Vgefr Inhibitors. Int. J. Pharm. Sci. Res.; 2017; 8, pp. 1796-1805. [DOI: https://dx.doi.org/10.13040/IJPSR.0975-8232.8(4).1796-05]
240. Ullah, S.; Hassan Khan, S.U.; Ali, T.; Zeb, M.T.; Riaz, M.H.; Khan, S.; Goyal, S.M. Molecular characterization and antibiotic susceptibility of Shiga toxin- producing Escherichia coli (STEC) isolated from raw milk of dairy bovines in Khyber Pakhtunkhwa, Pakistan. PLoS ONE; 2024; 19, e0307830. [DOI: https://dx.doi.org/10.1371/journal.pone.0307830]
241. Ullah, S.; Khan, S.U.H.; Khan, M.J.; Khattak, B.; Fozia, F.; Ahmad, I.; Wadaan, M.A.; Khan, M.F.; Baabbad, A.; Goyal, S.M. Multiple-Drug Resistant Shiga Toxin-Producing E. coli in Raw Milk of Dairy Bovine. Trop. Med. Infect. Dis.; 2024; 9, 64. [DOI: https://dx.doi.org/10.3390/tropicalmed9030064]
242. Iedani, A.; Mohammed, A.; Farhan, Z. MOLECULAR DETECTION of SHIGA TOXIN (stx1 and stx2) and INTIMIN (eaeA) GENES in ESCHERICHIA COLI ISOLATED from FECAL SAMPLES of CATTLE, SHEEP, and HUMAN in BASRAH GOVERNORATE. Basrah J. Vet. Res.; 2022; 18, pp. 288-305. [DOI: https://dx.doi.org/10.23975/bjvetr.2022.172827]
243. Ali, A.H.; Abdullah, T.S.; Ismail, L.A.; Kadim, R.J. Detecting stx1 and stx2 Genes from Escherichia coli O157:H7 Isolated from Soft Cheese Samples Collected from Different District in Baghdad City/Iraq. Iraqi J. Sci. Technol.; 2020; 11, pp. 60-66.
244. Kadhim, F.A.; Hassan, H.F.; Muhammed, H.A.; Al-khayat, K.K.K. Detection of Stx1 gene, Stx2 Gene and Flich7 Gene Shiga Toxin of Escherichia coli Isolated from Human and Chickens in Karbala City. Acad. Int. J. Pure Sci.; 2023; 1, pp. 7-12.
245. Najm, B.Y.; Khaleel, S.H.; Majeed, H.M. Molecular Characterization of Shiga Toxin Produced by Escherichia coli Isolated from Milk Samples in Baghdad City. J. Pure Appl. Microbiol.; 2022; 16, pp. 2165-2172. [DOI: https://dx.doi.org/10.22207/JPAM.16.3.76]
246. Abdulmajeed, M.A.; Jafar, N.B.; Hamada, Y.H. Isolation and identification of E. coli O157:H7 Strains Among Diarrheal Sample in Relation with the Presence of Stx1, Stx2, Hyla and Eaea Genes. HIV Nurs.; 2022; 22, pp. 2799-2806.
247. Taha, A. Isolation and characterization of stx1 and stx2 toxin-producing Escherichia coli in neonatal lambs with diarrhea in Nineveh governorate. J. Appl. Vet. Sci.; 2022; 7, pp. 23-27. [DOI: https://dx.doi.org/10.21608/javs.2022.147953.1159]
248. Abdulmajeed, M.A.; Jafar, N.B.; Hamada, Y.H. Investigation and Molecular Characterization of Shiga Toxin-Producing E. Coli O157:H7 From Meat and Dairy Products in Kirkuk Province, Iraq. J. Hyg. Eng. Des.; 2023; 42, pp. 65-74.
249. Jared, A.S.; AlJeboori, K.H. Molecular Detection of Enterotoxogenic Bacterial Toxins of Shiga Toxin Prodveing Escherichia coli Non 0157 Serogroup 026 Isolated from Human and Calves Stool. HIV Nurs.; 2023; 23, pp. 2154-2162.
250. Moran-Gilad, J.; Rokney, A.; Danino, D.; Ferdous, M.; Alsana, F.; Baum, M.; Dukhan, L.; Agmon, V.; Anuka, E.; Valinsky, L.
251. Al-Zogibi, O.G.; Mohamed, M.I.; Hessain, A.M.; El-Jakee, J.K.; Kabli, S.A. Molecular and serotyping characterization of shiga toxogenic Escherichia coli associated with food collected from Saudi Arabia. Saudi J. Biol. Sci.; 2015; 22, pp. 438-442. [DOI: https://dx.doi.org/10.1016/j.sjbs.2015.02.019] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26150750]
252. Hessain, A.M.; Al-Arfaj, A.A.; Zakri, A.M.; El-Jakee, J.K.; Al-Zogibi, O.G.; Hemeg, H.A.; Ibrahim, I.M. Molecular characterization of Escherichia coli O157:H7 recovered from meat and meat products relevant to human health in Riyadh, Saudi Arabia. Saudi J. Biol. Sci.; 2015; 22, pp. 725-729. [DOI: https://dx.doi.org/10.1016/j.sjbs.2015.06.009]
253. Bozçal, E.; Yiğittürk, G.; Uzel, A.; Aydemir, S.Ş. Investigation of enteropathogenic Escherichia coli and Shiga toxin-producing Escherichia coli associated with hemolytic uremic syndrome in İzmir Province, Turkey. Turk. J. Med. Sci.; 2016; 46, pp. 733-741. [DOI: https://dx.doi.org/10.3906/sag-1501-60] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27513249]
254. Ayaz, N.D.; Copuroglu, G.; Ormeci, E.; Oz, B. Presence of Staphylococcus aureus and Shiga Toxigenic Escherichia coli O157:H7 in Raw Meat in Ağrı, Turkey. Int. J. Enteric Pathog.; 2016; 4, pp. 6-36523. [DOI: https://dx.doi.org/10.15171/ijep.2016.06]
255. Dishan, A.; Hizlisoy, H.; Barel, M.; Disli, H.B.; Gungor, C.; Ertas Onmaz, N.; Gonulalan, Z.; Al, S.; Yildirim, Y. Biofilm formation, antibiotic resistance and genotyping of Shiga toxin-producing Escherichia coli isolated from retail chicken meats. Br. Poult. Sci.; 2023; 64, pp. 63-73. [DOI: https://dx.doi.org/10.1080/00071668.2022.2116697]
256. Uyanik, T.; Gücükoğlu, A.; Gürler, H.; Kanat, S.; Bölükbaş, A.; Çadirci, Ö. Clonal spread of non-O157 Shiga toxigenic Escherichia coli O21:H25 in raw water buffalo milks. J. Appl. Microbiol.; 2023; 134, lxad277. [DOI: https://dx.doi.org/10.1093/jambio/lxad277] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37994679]
257. Gulesen, R.; Levent, B.; Demir, T.; Akgeyik, M.; Kuran, S. Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Humans between 2011 and 2014. Jpn. J. Infect. Dis.; 2016; 69, pp. 390-394. [DOI: https://dx.doi.org/10.7883/yoken.JJID.2015.346]
258. Guran, H.S.; Vural, A.; Erkan, M.E.; Durmusoglu, H. Prevalence and some virulence genes of Escherichia coli O157 isolated from chicken meats and giblets. Ann. Anim. Sci.; 2017; 17, pp. 555-563. [DOI: https://dx.doi.org/10.1515/aoas-2016-0061]
259. Büyükcangaz, E.; Khider, M.; Şen, A.; Cengiz, M.; Sonal, S. Detection of Shiga-Toxin Producing E. coli (STEC), Enteropathogenic E. coli (EPEC) And Enterotoxigenic E. coli (ETEC) From Animals By M-PCR. J. Res. Vet. Med.; 2019; 38, pp. 88-94. [DOI: https://dx.doi.org/10.30782/jrvm.624890]
260. Gökmen, M.; İlhan, Z.; Tavşanlı, H.; Önen, A.; Ektik, N.; Göçmez, E.B. Prevalence and molecular characterization of shiga toxin-producing Escherichia coli in animal source foods and green leafy vegetables. Food Sci. Technol. Int.; 2024; 30, pp. 30-36. [DOI: https://dx.doi.org/10.1177/10820132221125104]
261. Gücükoglu, A.; İnaç, S. Characterization and Antibiotic Resistance Profile of E. coli O157:H7 Isolates in Water Buffalo Carcasses. Egypt. J. Vet. Sci.; 2023; 54, pp. 689-702. [DOI: https://dx.doi.org/10.21608/ejvs.2023.193590.1444]
262. Karakaya, E.; Aydin, F.; Kayman, T.; Abay, S. Escherichia coli in different animal feces: Phylotypes and virulence genes. World J. Microbiol. Biotechnol.; 2023; 39, 14. [DOI: https://dx.doi.org/10.1007/s11274-022-03451-w]
263. Goncuoglu, M.; Ayaz, N.D.; Mustak, H.K.; Cengiz, G.; Onaran Acar, B.; Mustak, B.I.; Iplikcioglu Aral, G.; Unal, G.; Goksoy, E.O.; Vural, A.
264. Şahin, N.; Yildirim, M.; Kizil, S. Investigation of virulence factors of shiga toxin-producing Escherichia coli strains isolated from sheep. Etlik Vet. Mikrobiyoloji Derg.; 2023; 34, pp. 36-45. [DOI: https://dx.doi.org/10.35864/evmd.1264065]
265. Al-Ajmi, D.; Rahman, S.; Banu, S. Occurrence, virulence genes, and antimicrobial profiles of Escherichia coli O157 isolated from ruminants slaughtered in Al Ain, United Arab Emirates. BMC Microbiol.; 2020; 20, 210. [DOI: https://dx.doi.org/10.1186/s12866-020-01899-0]
266. Francis, M.; Dziva, F.; Mlambo, C.; Akpaka, P. Shiga Toxin Producing Escherichia coli (STEC) in Food Producing Animals from Trinidad and Tobago. Am. J. Exp. Agric.; 2016; 14, pp. 1-9. [DOI: https://dx.doi.org/10.9734/AJEA/2016/28207]
267. Perez-Corrales, C.; Peralta-Barquero, V.; Duarte-Martinez, F.; Oropeza-Barrios, G. A 6-year retrospective study of clinical features, microbiology, and genomics of Shiga toxin-producing Escherichia coli in children who presented to a tertiary referral hospital in Costa Rica. Microbiol. Spectr.; 2024; 12, e03056-23. [DOI: https://dx.doi.org/10.1128/spectrum.03056-23]
268. Jarquin, C.; Morales, O.; McCracken, J.P.; Lopez, M.R.; Lopez, B.; Reyes, L.; Gómez, G.A.; Bryan, J.P.; Peruski, L.F.; Parsons, M.B.
269. Enriquez-Gómez, E.; Acosta-Dibarrat, J.; Talavera-Rojas, M.; Soriano-Vargas, E.; Navarro, A.; Morales-Espinosa, R.; Velázquez-Ordoñez, V.; Cal-Pereyra, L. Serotypes, Pathotypes, Shiga Toxin Variants and Antimicrobial Resistance in Diarrheagenic Escherichia coli Isolated from Rectal Swabs and Sheep Carcasses in an Abattoir in Mexico. Agriculture; 2023; 13, 1604. [DOI: https://dx.doi.org/10.3390/agriculture13081604]
270. Amézquita-López, B.A.; Quiñones, B.; Soto-Beltrán, M.; Lee, B.G.; Yambao, J.C.; Lugo-Melchor, O.Y.; Chaidez, C. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and Non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob. Resist. Infect. Control; 2016; 5, 1. [DOI: https://dx.doi.org/10.1186/s13756-015-0100-5]
271. Navarro, A.; Cauich-Sánchez, P.I.; Trejo, A.; Gutiérrez, A.; Díaz, S.P.; Díaz, C.M.; Cravioto, A.; Eslava, C. Characterization of Diarrheagenic Strains of Escherichia coli Isolated from Cattle Raised in Three Regions of Mexico. Front. Microbiol.; 2018; 9, 2373. [DOI: https://dx.doi.org/10.3389/fmicb.2018.02373]
272. Brusa, V.; Restovich, V.; Galli, L.; Teitelbaum, D.; Signorini, M.; Brasesco, H.; Londero, A.; García, D.; Padola, N.L.; Superno, V.
273. Alonso, M.Z.; Krüger, A.; Sanz, M.E.; Padola, N.L.; Lucchesi, P.M.A. Serotypes, virulence profiles and stx subtypes of Shigatoxigenic Escherichia coli isolated from chicken derived products. Rev. Argent. Microbiol.; 2016; 48, pp. 325-328. [DOI: https://dx.doi.org/10.1016/j.ram.2016.04.009]
274. Bonino, M.P.; Crivelli, X.B.; Petrina, J.F.; Galateo, S.; Gomes, T.A.T.; Navarro, A.; Cundon, C.; Broglio, A.; Sanin, M.; Bentancor, A. Detection and analysis of Shiga toxin producing and enteropathogenic Escherichia coli in cattle from Tierra del Fuego, Argentina. Braz. J. Microbiol.; 2023; 54, pp. 1257-1266. [DOI: https://dx.doi.org/10.1007/s42770-023-00958-8]
275. Santos, E.C.C.D.; Castro, V.S.; Cunha-Neto, A.; Santos, L.F.D.; Vallim, D.C.; Lisboa, R.D.C.; Carvalho, R.C.T.; Junior, C.A.C.; Figueiredo, E.E.D.S. Escherichia coli O26 and O113:H21 on Carcasses and Beef from a Slaughterhouse Located in Mato Grosso, Brazil. Foodborne Pathog. Dis.; 2018; 15, pp. 653-659. [DOI: https://dx.doi.org/10.1089/fpd.2018.2431] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30036077]
276. da Silva, C.R.; Sanches, M.S.; Macedo, K.H.; Dambrozio, A.M.L.; da Rocha, S.P.D.; Navarro, A.; Pelayo, J.S. Molecular and phenotypic characterization of diarrheagenic Escherichia coli isolated from groundwater in rural areas in southern Brazil. J. Water Health; 2019; 17, pp. 597-608. [DOI: https://dx.doi.org/10.2166/wh.2019.142] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31313997]
277. Costa, L.R.M.; Garcez Buiatte, A.B.; da Cunha Dias, S.; Garcia, L.N.H.; Cossi, M.V.C.; Yamatogi, R.S.; Nero, L.A.; Pereira, J.G. Influence of animal production systems on the presence of pathogenic strains of Escherichia coli in the bovine production chain. Food Control; 2024; 157, 110155. [DOI: https://dx.doi.org/10.1016/j.foodcont.2023.110155]
278. Ori, E.L.; Takagi, E.H.; Andrade, T.S.; Miguel, B.T.; Cergole-Novella, M.C.; Guth, B.E.C.; Hernandes, R.T.; Dias, R.C.B.; Pinheiro, S.R.S.; Camargo, C.H.
279. Mussio, P.; Martínez, I.; Luzardo, S.; Navarro, A.; Leotta, G.; Varela, G. Phenotypic and genotypic characterization of Shiga toxin-producing Escherichia coli strains recovered from bovine carcasses in Uruguay. Front. Microbiol.; 2023; 14, 1130170. [DOI: https://dx.doi.org/10.3389/fmicb.2023.1130170]
280. Pires, S.M.; Majowicz, S.; Gill, A.; Devleesschauwer, B. Global and regional source attribution of Shiga toxin-producing Escherichia coli infections using analysis of outbreak surveillance data. Epidemiol. Infect.; 2019; 147, e236. [DOI: https://dx.doi.org/10.1017/S095026881900116X]
281. World Health Organization. Shiga Toxin-Producing Escherichia coli (STEC) and Food: Attribution, Characterization and Monitoring; World Health Organization: Geneva, Switzerland, 2018; Volume 19, ISBN 9241514272
282. Blanco, M.; Blanco, J.E.; Mora, A.; Rey, J.; Alonso, J.M.; Hermoso, M.; Hermoso, J.; Alonso, M.P.; Dahbi, G.; González, E.A.
283. Authority, E.F.S. European Centre for Disease Prevention and Control the European Union One Health 2021 Zoonoses Report. EFSA J.; 2022; 20, e07666. [DOI: https://dx.doi.org/10.2903/j.efsa.2022.7666]
284. Kim, J.-S.; Lee, M.-S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell. Infect. Microbiol.; 2020; 10, 273. [DOI: https://dx.doi.org/10.3389/fcimb.2020.00273]
285. Centers for Disease Control and Prevention (CDC). E. coli (Escherichia coli)—Outbreaks. Available online: https://www.cdc.gov/ecoli/outbreaks/index.html (accessed on 1 March 2025).
286. Rusconi, B.; Sanjar, F.; Koenig, S.S.K.; Mammel, M.K.; Tarr, P.I.; Eppinger, M. Whole Genome Sequencing for Genomics-Guided Investigations of Escherichia coli O157:H7 Outbreaks. Front. Microbiol.; 2016; 7, 985. [DOI: https://dx.doi.org/10.3389/fmicb.2016.00985] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27446025]
287. Eppinger, M.; Mammel, M.K.; Leclerc, J.E.; Ravel, J.; Cebula, T.A. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc. Natl. Acad. Sci. USA; 2011; 108, pp. 20142-20147. [DOI: https://dx.doi.org/10.1073/pnas.1107176108]
288. UK Health Security Agency Research and Analysis. Shiga Toxin-Producing Escherichia coli (STEC) Data. 2021; Available online: https://www.gov.uk/government/publications/escherichia-coli-e-coli-o157-annual-totals/shiga-toxin-producing-escherichia-coli-stec-data-2021 (accessed on 1 March 2025).
289. OzFoodNet Working Group. Monitoring the incidence and causes of disease potentially transmitted by food in Australia: Annual report of the OzFoodNet network, 2017. Commun. Dis. Intell.; 2022; 46, pp. 1-70. [DOI: https://dx.doi.org/10.33321/cdi.2022.46.59]
290. Ikeuchi, S.; Hirose, S.; Shimada, K.; Koyama, A.; Ishida, S.; Katayama, N.; Suzuki, T.; Tokairin, A.; Tsukamoto, M.; Tsue, Y.
291. Delannoy, S.; Beutin, L.; Fach, P. Discrimination of Enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC Strains Based on Detection of Various Combinations of Type III Effector Genes. J. Clin. Microbiol.; 2013; 51, pp. 3257-3262. [DOI: https://dx.doi.org/10.1128/JCM.01471-13] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23884997]
292. USDA Food Safety and Inspection Service. Expansion of FSIS Non-O157 Toxin-Producing Escherichia coli (STEC) Testing to Additional Raw Beef Products. Available online: https://www.fsis.usda.gov/policy/fsis-notice/06-23 (accessed on 1 March 2025).
293. Zhang, H.; Yamamoto, E.; Murphy, J.; Carrillo, C.; Locas, A. Shiga Toxin–Producing Escherichia coli (STEC) and STEC-Associated Virulence Genes in Raw Ground Pork in Canada. J. Food Prot.; 2021; 84, pp. 1956-1964. [DOI: https://dx.doi.org/10.4315/JFP-21-147]
294. Hoyle, D.V.; Keith, M.; Williamson, H.; Macleod, K.; Mathie, H.; Handel, I.; Currie, C.; Holmes, A.; Allison, L.; McLean, R.
295. Lee, K.; Iguchi, A.; Terano, C.; Hataya, H.; Isobe, J.; Seto, K.; Ishijima, N.; Akeda, Y.; Ohnishi, M.; Iyoda, S.
296. Delannoy, S.; Tran, M.-L.; Fach, P. Insights into the assessment of highly pathogenic Shiga toxin-producing Escherichia coli in raw milk and raw milk cheeses by High Throughput Real-time PCR. Int. J. Food Microbiol.; 2022; 366, 109564. [DOI: https://dx.doi.org/10.1016/j.ijfoodmicro.2022.109564]
297. Castro, V.S.; Figueiredo, E.E.d.S.; Stanford, K.; McAllister, T.; Conte-Junior, C.A. Shiga-Toxin Producing Escherichia coli in Brazil: A Systematic Review. Microorganisms; 2019; 7, 137. [DOI: https://dx.doi.org/10.3390/microorganisms7050137] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31100803]
298. Michelacci, V.; Asséré, A.; Cacciò, S.; Cavaiuolo, M.; Mooijman, K.; Morabito, S.; Pedersen, S.K.; Sayeb, M.; Segerman, B.; Simonsson, M.
299. Hauser, J.R.; Atitkar, R.R.; Petro, C.D.; Lindsey, R.L.; Strockbine, N.; O’Brien, A.D.; Melton-Celsa, A.R. The Virulence of Escherichia coli O157:H7 Isolates in Mice Depends on Shiga Toxin Type 2a (Stx2a)-Induction and High Levels of Stx2a in Stool. Front. Cell. Infect. Microbiol.; 2020; 10, 62. [DOI: https://dx.doi.org/10.3389/fcimb.2020.00062]
300. Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga Toxin Subtypes Display Dramatic Differences in Potency. Infect. Immun.; 2011; 79, pp. 1329-1337. [DOI: https://dx.doi.org/10.1128/IAI.01182-10]
301. Pinto, G.; Sampaio, M.; Dias, O.; Almeida, C.; Azeredo, J.; Oliveira, H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genom.; 2021; 22, 366. [DOI: https://dx.doi.org/10.1186/s12864-021-07685-0] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34011288]
302. McNichol, B.A.; Bova, R.A.; Torres, K.; Preston, L.N.; Melton-Celsa, A.R. Switching Shiga Toxin (Stx) Type from Stx2d to Stx2a but Not Stx2c Alters Virulence of Stx-Producing Escherichia coli (STEC) Strain B2F1 in Streptomycin (Str)-Treated Mice. Toxins; 2021; 13, 64. [DOI: https://dx.doi.org/10.3390/toxins13010064]
303. Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev.; 1998; 11, pp. 142-201. [DOI: https://dx.doi.org/10.1128/CMR.11.1.142]
304. Bai, X.; Zhang, W.; Tang, X.; Xin, Y.; Xu, Y.; Sun, H.; Luo, X.; Pu, J.; Xu, J.; Xiong, Y.
305. Usein, C.-R.; Ciontea, A.S.; Militaru, C.M.; Condei, M.; Dinu, S.; Oprea, M.; Cristea, D.; Michelacci, V.; Scavia, G.; Zota, L.C.
306. Vishram, B.; Jenkins, C.; Greig, D.R.; Godbole, G.; Carroll, K.; Balasegaram, S.; Byrne, L. The emerging importance of Shiga toxin-producing Escherichia coli other than serogroup O157 in England. J. Med. Microbiol.; 2021; 70, 001375. [DOI: https://dx.doi.org/10.1099/jmm.0.001375]
307. Yamasaki, E.; Watahiki, M.; Isobe, J.; Sata, T.; Nair, G.; Kurazono, H. Quantitative Detection of Shiga Toxins Directly from Stool Specimens of Patients Associated with an Outbreak of Enterohemorrhagic Escherichia coli in Japan—Quantitative Shiga toxin detection from stool during EHEC outbreak. Toxins; 2015; 7, pp. 4381-4389. [DOI: https://dx.doi.org/10.3390/toxins7104381]
308. Petro, C.D.; Trojnar, E.; Sinclair, J.; Liu, Z.-M.; Smith, M.; O’Brien, A.D.; Melton-Celsa, A. Shiga Toxin Type 1a (Stx1a) Reduces the Toxicity of the More Potent Stx2a In Vivo and In Vitro. Infect. Immun.; 2019; 87, 10-1128. [DOI: https://dx.doi.org/10.1128/IAI.00787-18] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30670557]
309. Nemati, A.; Gigliucci, F.; Morabito, S.; Badouei, M.A. Virulence plasmids in edema disease: Insights from whole-genome analysis of porcine O139:H1 Shiga toxin-producing Escherichia coli (STEC) strains. Front. Cell. Infect. Microbiol.; 2025; 15, 1528408. [DOI: https://dx.doi.org/10.3389/fcimb.2025.1528408]
310. Jaros, P.; Cookson, A.L.; Campbell, D.M.; Duncan, G.E.; Prattley, D.; Carter, P.; Besser, T.E.; Shringi, S.; Hathaway, S.; Marshall, J.C.
311. Persad, A.K.; LeJeune, J.T. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol. Spectr.; 2014; 2, pp. 211-230. [DOI: https://dx.doi.org/10.1128/microbiolspec.EHEC-0027-2014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26104194]
312. Kintz, E.; Brainard, J.; Vanderes, M.; Vivancos, R.; Byrne, L.; Butt, S.; Jenkins, C.; Elson, R.; Lake, I.; Hunter, P. Animal and environmental risk factors for sporadic Shiga toxin-producing Escherichia coli (STEC) infection in England: A case control study for O157, O26 and other STEC serotypes. Pathog. Glob. Health; 2023; 117, pp. 655-663. [DOI: https://dx.doi.org/10.1080/20477724.2023.2197672]
313. Islam, M.Z.; Musekiwa, A.; Islam, K.; Ahmed, S.; Chowdhury, S.; Ahad, A.; Biswas, P.K. Regional variation in the prevalence of E. coli O157 in cattle: A meta-analysis and meta-regression. PLoS ONE; 2014; 9, e93299. [DOI: https://dx.doi.org/10.1371/journal.pone.0093299]
314. Sadiq, S.M.; Hazen, T.H.; Rasko, D.A.; Eppinger, M. EHEC Genomics: Past, Present, and Future. Microbiol. Spectr.; 2014; 2, pp. 1-13. [DOI: https://dx.doi.org/10.1128/microbiolspec.EHEC-0020-2013]
315. Eppinger, M.; Cebula, T.A. Future perspectives, applications and challenges of genomic epidemiology studies for food-borne pathogens: A case study of Enterohemorrhagic Escherichia coli (EHEC) of the O157:H7 serotype. Gut Microbes; 2015; 6, pp. 194-201. [DOI: https://dx.doi.org/10.4161/19490976.2014.969979]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
In the past two decades, Shiga toxin-producing Escherichia coli (STEC) has been responsible for multiple large-scale outbreaks worldwide, affecting thousands of individuals. While surveillance systems in developed countries such as the United States, the United Kingdom, Europe, Australia, Japan, and Canada are well-established, data on STEC prevalence in developing nations remain sparse, partly due to the absence of well-structured molecular diagnostic networks or surveillance systems. This review analyzed 250 studies published between 2014 and 2024 across 39 developing countries in Africa, Asia, Latin America, and the Caribbean, yielding 8986 STEC isolates. Detailed serogroup and serotype data were available for 55.9% of these, with O111, O157, and O26 being most common in humans. In animals, O157:H7 was most frequent, while food isolates mirrored global trends with O157 and O111 dominance. Notably, O145, a serogroup frequently reported in the U.S. and Europe, was absent from the ‘’Top Seven’’ serogroups. Shiga toxin subtypes stx1a and stx2a were most prevalent in human cases. In animal isolates, stx2e was the most prevalent subtype, while stx2c was most commonly found in food samples. We recommend establishing reference laboratories in these regions to improve data quality, strengthen monitoring efforts, and reduce the burden of STEC infections globally.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; [email protected] (A.N.); [email protected] (Z.K.); [email protected] (S.S.K.); [email protected] (A.S.M.S.); [email protected] (M.A.B.); [email protected] (H.J.); [email protected] (M.H.)
2 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; [email protected]
3 Department of Molecular Microbiology & Immunology, University of Texas at San Antonio, San Antonio, TX 78249-0600, USA, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249-0600, USA
4 European Union Reference Laboratory (EURL) for
5 Center of Bacteriology (National Reference Laboratory for STEC Infections and HUS), Instituto Adolfo Lutz, São Paulo 01246-000, SP, Brazil; [email protected]
6 Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; [email protected]